Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lack of evidence for phase-only control of retinal photoisomerization in the strict one-photon limit


The concept of shaping electric fields to steer light-induced processes coherently has fascinated scientists for decades. Despite early theoretical considerations that ruled out one-photon coherent control (CC), several experimental studies reported that molecular responses are sensitive to the shape of the excitation field in the weak-field limit. These observations were largely attributed to the presence of rapid-decay channels, but experimental verification is lacking. Here, we test this hypothesis by investigating the degree of achievable control over the photoisomerization of the retinal protonated Schiff-base in bacteriorhodopsin, isorhodopsin and rhodopsin, all of which exhibit similar chromophores but different isomerization yields and excited-state lifetimes. Irrespective of the system studied, we find no evidence for dissipation-dependent behaviour, nor for any CC in the strict one-photon limit. Our results question the extent to which a photochemical process at ambient conditions can be controlled at the amplitude level, and how the underlying molecular potential-energy surfaces and dynamics may influence this controllability.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Concept and realization of the self-referenced weak-field CC experiment.
Figure 2: Self-referenced CC of rho101 under high- and weak-field conditions.
Figure 3: Weak-field CC on retinal protonated Schiff-bases embedded in different opsin proteins.


  1. Tannor, D. J. & Rice, S. A. Control of selectivity of chemical reaction via control of wave packet evolution. J. Chem. Phys. 83, 5013–5018 (1985).

    Article  CAS  Google Scholar 

  2. Brumer, P. & Shapiro, M. Control of unimolecular reactions using coherent light. Chem. Phys. Lett. 126, 541–546 (1986).

    Article  CAS  Google Scholar 

  3. Brumer, P. & Shapiro, M. Laser control of molecular processes. Annu. Rev. Phys. Chem. 43, 257–282 (1992).

    Article  CAS  Google Scholar 

  4. Warren, W. S., Rabitz, H. & Dahleh, M. Coherent control of quantum dynamics: the dream is alive. Science 259, 1581–1589 (1993).

    Article  CAS  Google Scholar 

  5. Gordon, R. J. & Rice, S. A. Active control of the dynamics of atoms and molecules. Annu. Rev. Phys. Chem. 48, 601–641 (1997).

    Article  CAS  Google Scholar 

  6. Rabitz, H., de Vivie-Riedle, R., Motzkus, M. & Kompa, K. Whither the future of controlling quantum phenomena? Science 288, 824–828 (2000).

    Article  CAS  Google Scholar 

  7. Shapiro, M. & Brumer, P. Principles of the Quantum Control of Atomic and Molecular Processes (Wiley, 2003).

    Google Scholar 

  8. Brif, C., Chakrabarti, R. & Rabitz, H. Control of quantum phenomena: past, present and future. New J. Phys. 12, 075008 (2010).

    Article  Google Scholar 

  9. Brumer, P. & Shapiro, M. One photon mode selective control of reactions by rapid or shaped laser pulses: an emperor without clothes? Chem. Phys. 139, 221–228 (1989).

    Article  CAS  Google Scholar 

  10. Spanner, M., Arango, C. A. & Brumer, P. Communication: conditions for one-photon coherent phase control in isolated and open quantum systems. J. Chem. Phys 133, 151101(R) (2010).

    Article  Google Scholar 

  11. Katz, G., Ratner, M. A. & Kosloff, R. Control by decoherence: weak field control of an excited state objective. New J. Phys. 12, 015003(R) (2010).

    Article  Google Scholar 

  12. Arango, C. A. & Brumer, P. Communication: One-photon phase control of cistrans isomerization in retinal. J. Chem. Phys. 138, 071104(R) (2013).

    Article  Google Scholar 

  13. Prokhorenko, V. I. et al. Coherent control of retinal isomerization in bacteriorhodopsin. Science 313, 1257–1261 (2006).

    Article  CAS  Google Scholar 

  14. Hoki, K. & Brumer, P. Dissipation effects on laser control of cis/trans isomerization. Chem. Phys. Lett. 468, 23–27 (2009).

    Article  CAS  Google Scholar 

  15. Prokhorenko, V. I., Nagy, A. M. & Miller, R. J. D. Coherent control of the population transfer in complex solvated molecules at weak excitation. An experimental study. J. Chem. Phys. 122, 184502(R) (2005).

    Article  Google Scholar 

  16. van der Walle, P., Milder, M. T. W., Kuipers, L. & Herek, J. L. Quantum control experiment reveals solvation-induced decoherence. Proc. Natl Acad. Sci. USA 106, 7714–7717 (2009).

    Article  CAS  Google Scholar 

  17. Mathies, R. A., Brito Cruz, C. H., Pollard, W. T. & Shank, C. V. Direct observation of the femtosecond excited-state cistrans isomerization in bacteriorhodopsin. Science 240, 777–779 (1988).

    Article  CAS  Google Scholar 

  18. Schoenlein, R. W., Peteanu, L. A., Mathies, R. A. & Shank, C. V. The first step in vision: femtosecond isomerization of rhodopsin. Science 254, 412–415 (1991).

    Article  CAS  Google Scholar 

  19. Polli, D. et al. Wavepacket splitting and two-pathway deactivation in the photoexcited visual pigment isorhodopsin. Angew. Chem. Int. Ed. 53, 2504–2507 (2014).

    Article  CAS  Google Scholar 

  20. Tittor, J. & Oesterhelt, D. The quantum yield of bacteriorhodopsin. FEBS Lett. 263, 269–273 (1990).

    Article  CAS  Google Scholar 

  21. Kim, J. E., Tauber, M. J. & Mathies, R. A. Wavelength dependent cistrans isomerization in vision. Biochemistry 40, 13774–13778 (2001).

    Article  CAS  Google Scholar 

  22. Schoenlein, R. W., Peteanu, L. A., Wang, Q., Mathies, R. A. & Shank, C. V. Femtosecond dynamics of cistrans isomerization in a visual pigment analog: isorhodopsin. J. Phys. Chem. 97, 12087–12092 (1993).

    Article  CAS  Google Scholar 

  23. Weiner, A. M., Leaird, D. E., Wiederrecht, G. P. & Nelson, K. A. Femtosecond pulse sequences used for optical manipulation of molecular motion. Science 247, 1317–1319 (1990).

    Article  CAS  Google Scholar 

  24. Rabitz, H. A., Hsieh, M. M. & Rosenthal, C. M. Quantum optimally controlled transition landscapes. Science 303, 1998–2001 (2004).

    Article  CAS  Google Scholar 

  25. Brinks, D., Hildner, R., Stefani, F. D. & van Hulst, N. F. Beating spatio-temporal coupling: implications for pulse shaping and coherent control experiments. Opt. Express 19, 26486–26499 (2011).

    Article  Google Scholar 

  26. Cerullo, G., Bardeen, C. J., Wang, Q. & Shank, C. V. High-power femtosecond chirped pulse excitation of molecules in solution. Chem. Phys. Lett. 262, 362–368 (1996).

    Article  CAS  Google Scholar 

  27. Weigel, A., Sebesta, A. & Kukura, P. Shaped and feedback-controlled excitation of single molecules in the weak-field limit. J. Phys. Chem. Lett. 6, 4023–4037 (2015).

    Article  Google Scholar 

  28. Dobryakov, A. L. et al. Femtosecond pump/supercontinuum-probe spectroscopy: optimized setup and signal analysis for single-shot spectral referencing. Rev. Sci. Instrum. 81, 113106(R) (2010).

    Article  Google Scholar 

  29. Schnedermann, C., Liebel, M. & Kukura, P. Mode-specificity of vibrationally coherent internal conversion in rhodopsin during the primary visual event. J. Am. Chem. Soc. 137, 2886–2891 (2015).

    Article  CAS  Google Scholar 

  30. Myers, A. B., Harris, R. A. & Mathies, R. A. Resonance Raman excitation profiles of bacteriorhodopsin. J. Chem. Phys. 79, 603–613 (1983).

    Article  CAS  Google Scholar 

  31. Florean, A. C. et al. Control of retinal isomerization in bacteriorhodopsin in the high-intensity regime. Proc. Natl Acad. Sci. USA 106, 10896–10900 (2009).

    Article  CAS  Google Scholar 

  32. Liebel, M. et al. Direct observation of the coherent nuclear response after the absorption of a photon. Phys. Rev. Lett. 112, 238301(R) (2014).

    Article  Google Scholar 

Download references


We thank K. M. Spillane, G. Bassolino, G. F. Taylor and A. Watts for the rhodopsin, isorhodopsin and bacteriorhodopsin samples. This work was supported by a Career Acceleration Fellowship from the Engineering and Physical Sciences Research Council (EP/H003541/1).

Author information

Authors and Affiliations



P.K. proposed the project, P.K. and M.L. designed the experiments, M.L. performed the experiments and P.K. and M.L. analysed and discussed the data and wrote the manuscript together.

Corresponding author

Correspondence to P. Kukura.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 823 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liebel, M., Kukura, P. Lack of evidence for phase-only control of retinal photoisomerization in the strict one-photon limit. Nature Chem 9, 45–49 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing