Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A stable heavier group 14 analogue of vinylidene

Subjects

Abstract

Vinylidene (H2C=C) is a member of the family of compounds of composition CH (and isomeric with ethyne, HC≡CH), but it has been observed only transiently—with a lifetime in the region of 0.1 ns. Indeed, no simple (non-base-stabilized) compounds of the type R2E=E have been characterized structurally for any of the group 14 elements. Here we show that by employing the bulky and strongly electron-donating boryl ligand (HCDippN)2B (Dipp, 2,6-iPr2C6H3), a simple monomeric digermavinylidene compound, (boryl)2GeGe, can be synthesized and is stable at room temperature. Both its formation via the two-electron chemical oxidation of the symmetrical Ge0 compound K2[(boryl)GeGe(boryl)] and its subsequent reaction chemistry (for example, with H2), are consistent with a high substituent lability and the accessibility of both 1,1- and 1,2-substitution patterns. Structural and computational studies of [(HCDippN)2B]2GeGe reveal a weak Ge–Ge double bond—the π component of which contributes to the highest occupied molecular orbital (HOMO)—with a Ge-centred lone pair as the HOMO–1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isomeric forms of E2H2.
Figure 2: Synthesis of digermavinylidene 5 and the related digermanium systems 2 and 3.
Figure 3: Molecular structures as determined by X-ray crystallography.
Figure 4: Electron-density surfaces and energies for key molecular orbitals of 5.
Figure 5: Uptake of dihydrogen by digermavinylidene 5.

Similar content being viewed by others

References

  1. DeKock, R. L. & Gray, H. B. Chemical Structure and Bonding (Univ. Science Books, 1989).

    Google Scholar 

  2. Simonetta, M. & Gavezzotti, A. in The Chemistry of the Carbon–Carbon Triple Bond (ed. Patai, S.) (Wiley, 1978).

    Google Scholar 

  3. Kekulé, A. Sur la constitution des substances aromatiques. Bull. Soc. Chim. Fr. 3, 98–110 (1865).

    Google Scholar 

  4. Cava, M. P. & Mitchell, M. J. Cyclobutadiene and Related Compounds (Academic, 1967).

    Google Scholar 

  5. Eaton, P. E. & Cole, T. W. Cubane. J. Am. Chem. Soc. 86, 3157–3158 (1964).

    Article  CAS  Google Scholar 

  6. Fischer, R. C. & Power, P. P. π-Bonding and the lone pair effect in multiple bonds involving heavier main group elements—developments in the new millennium. Chem. Rev. 110, 3877–3923 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Power, P. P. Bonding and reactivity of heavier group 14 element alkyne analogues. Organometallics 26, 4362–4372 (2007).

    Article  CAS  Google Scholar 

  8. Lee, V. Y. & Sekiguchi, A. Aromaticity of group 14 organometallics: experimental aspects. Angew. Chem. Int. Ed. 46, 6596–6620 (2007).

    Article  CAS  Google Scholar 

  9. Abersfelder, K., White, A. J. P., Rzepa, H. S. & Scheschkewitz, D. A tricyclic aromatic isomer of hexasilabenzene. Science 327, 564–566 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Stang, P. J. Unsaturated carbenes. Chem. Rev. 78, 383–405 (1978).

    Article  CAS  Google Scholar 

  12. Bruce, M. I. Organometallic chemistry of vinylidene and related unsaturated carbenes. Chem. Rev. 91, 197–257 (1991).

    Article  CAS  Google Scholar 

  13. Ervin, K. M. et al. Bond strengths of ethylene and acetylene. J. Am. Chem. Soc. 112, 5750–5759 (1990).

    Article  CAS  Google Scholar 

  14. Krishnan, R., Frisch, M. J., Pople, J. A. & Schleyer, P. v. R. The vinylidene–acetylene isomerization barrier. Chem. Phys. Lett. 79, 408–411 (1981).

    Article  CAS  Google Scholar 

  15. Osamura, Y. Schaefer, H. F. III, Gray, S. K. & Miller, W. H. Vinylidene: a very shallow minimum on the C2H2 potential energy surface. J. Am. Chem. Soc. 103, 1904–1907 (1981).

    Article  CAS  Google Scholar 

  16. Chang, N.-Y. Shen, M.-Y. & Yu, C.-H. Extended ab initio studies of the vinylidene–acetylene rearrangement. J. Chem. Phys. 106, 3237–3242 (1997).

    Article  CAS  Google Scholar 

  17. Stanton, J. F. & Gauss, J. Some predictions relevant to future spectroscopic observation of S1 vinylidene. J. Chem. Phys. 101, 3001–3005 (1994).

    Article  CAS  Google Scholar 

  18. Breidung, J. et al. Difluorovinylidene, F2C=C. Angew. Chem. Int. Ed. Engl. 36, 1983–1985 (1997).

    Article  CAS  Google Scholar 

  19. Brody, H. K., Magers, D. H. & Leszczyński, J. Ab initio studies of methylenecarbene and isoelectronic species. Struct. Chem. 6, 293–300 (1995).

    Article  CAS  Google Scholar 

  20. Nagase, S., Kobayashi, K. & Takagi, N. Triple bonds between heavier group 14 elements. A theoretical approach. J. Organomet. Chem. 611, 264–271 (2000).

    Article  CAS  Google Scholar 

  21. Lein, M., Krapp, A. & Frenking, G. Why do the heavy-atom analogues of acetylene E2H2 (E = Si−Pb) exhibit unusual structures? J. Am. Chem. Soc. 127, 6290–6299 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Landis, C. R. & Weinhold, F. Origin of trans-bent geometries in maximally bonded transition metal and main group molecules. J. Am. Chem. Soc. 128, 7335–7345 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Rivard, E. Group 14 inorganic hydrocarbon analogues. Chem. Soc. Rev. 45, 989–1003 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Harper, W. W. et al. Laser spectroscopic detection of the simplest unsaturated silylene and germylene. J. Am. Chem. Soc. 119, 8361–8362 (1997).

    Article  CAS  Google Scholar 

  25. Chardonnier, M., Bogey, M., Demuynck, C. & Destombes, J.-L. Nonclassical structures in silicon-containing molecules: the monobridged isomer of Si2H2 . J. Chem. Phys. 97, 7984–7989 (1992).

    Article  Google Scholar 

  26. Pu, L., Twamley, B. & Power, P. P. Synthesis and characterization of 2,6-Trip2H3C6PbPbC6H3-2,6-Trip2 (Trip = C6H2-2,4,6-i-Pr3): a stable heavier group 14 element analogue of an alkyne. J. Am. Chem. Soc. 122, 3524–3525 (2000).

    Article  CAS  Google Scholar 

  27. Phillips, A. D., Wright, R. J., Olmstead, M. M. & Power, P. P. Synthesis and characterization of 2,6-Dipp2-H3C6SnSnC6H3-2,6-Dipp2 (Dipp = C6H3-2,6-iPr2): a tin analogue of an alkyne. J. Am. Chem. Soc. 124, 5930–5931 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Stender, M., Phillips, A. D., Wright, R. J. & Power, P. P. Synthesis and characterization of a digermanium analogue of an alkyne. Angew. Chem. Int. Ed. 41, 1785–1787 (2002).

    Article  CAS  Google Scholar 

  29. Sekiguchi, A., Kinjo, R. & Ichinohe, M. A stable compound containing a silicon–silicon triple bond. Science 305, 1755–1757 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Jana, A., Huch, V. & Scheschkewitz, D. NHC-stabilized silagermenylidene: a heavier analogue of vinylidene. Angew. Chem. Int. Ed. 52, 12179–12182 (2013).

    Article  CAS  Google Scholar 

  31. Jana, A., Majumdar, M., Huch, V., Zimmer, M. & Scheschkewitz, D. NHC-coordinated silagermenylidene functionalized in allylic position and its behaviour as a ligand. Dalton Trans. 43, 5175–5181 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Ghana, P., Arz, M. I., Das, U., Schnakenburg, G. & Filippou, A. C. Si=Si double bonds: synthesis of an NHC-stabilized disilavinylidene. Angew. Chem. Int. Ed. 54, 9980–9985 (2015).

    Article  CAS  Google Scholar 

  33. Leung, W. P., Chan, Y.-C. & So, C.-W. Chemistry of heavier group 14 base-stabilized heterovinylidenes. Organometallics 34, 2067–2085 (2015).

    Article  CAS  Google Scholar 

  34. Spikes, G. H., Fettinger, J. C. & Power, P. P. Facile activation of dihydrogen by an unsaturated heavier main group compound. J. Am. Chem. Soc. 127, 12232–12233 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Fischer, R. C., Pu, L., Fettinger, J. C., Brynda, M. A. & Power, P. P. Very large changes in bond length and bond angle in a heavy group 14 element alkyne analogue by modification of a remote ligand substituent. J. Am. Chem. Soc. 128, 11366–11367 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Sugiyama, Y. et al. Synthesis and properties of a new kinetically stabilized digermyne: new insights for a germanium analogue of an alkyne. J. Am. Chem. Soc. 128, 1023–1031 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Li, J., Schenk, C., Goedecke, C., Frenking, G. & Jones, C. A digermyne with a Ge–Ge single bond that activates dihydrogen in the solid state. J. Am. Chem. Soc. 133, 18622–18625 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Hadlington, T. J., Hermann, M., Li, J., Frenking, G. & Jones, C. Activation of H2 by a multiply bonded amido-digermyne: evidence for the formation of a hydrido-germylene. Angew. Chem. Int. Ed. 52, 10199–10203 (2013).

    Article  CAS  Google Scholar 

  39. Sasamori, T. et al. Synthesis and reactions of a stable 1,2-diaryl-1,2-dibromodisilene: a precursor for substituted disilenes and a 1,2-diaryldisilyne. J. Am. Chem. Soc. 130, 13856–13857 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Protchenko, A. V. et al. A stable two-coordinate acyclic silylene. J. Am. Chem. Soc. 134, 6500–6503 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Protchenko, A. V. et al. Stable GaX2, InX2 and TlX2 radicals. Nat. Chem. 6, 315–319 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Braunschweig, H., Dewhurst, R. D. & Schneider, A. Electron-precise coordination modes of boron-centered ligands. Chem. Rev. 110, 3924–3957 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Segawa, Y., Yamashita, M. & Nozaki, K. Boryllithium: isolation, characterization, and reactivity as a boryl anion. Science 314, 113–115 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Rupar, P. A., Staroverov, V. N., Ragogna, P. J. & Baines, K. M. A germanium(II)-centered dication. J. Am. Chem. Soc. 129, 15138–15139 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Green, S. P., Jones, C. & Stasch, A. Stable magnesium(I) compounds with Mg–Mg bonds. Science 318, 1754–1757 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Pu, L. et al. Germanium and tin analogues of alkynes and their reduction products. J. Am. Chem. Soc. 125, 11626–11636 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Cui, C., Olmstead, M. M., Fettinger, J. C., Spikes, G. H. & Power, P. P. Reactions of the heavier group 14 element alkyne analogues ArʹEEArʹ (Arʹ = C6H3-2,6(C6H3-2,6-iPr2)2; E = Ge, Sn) with unsaturated molecules: probing the character of the EE multiple bonds. J. Am. Chem. Soc. 127, 17530–17541 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Broeckaert, L., Geerlings, P., Růžička, A., Willem, R. & De Proft, F. Can aromatic π-clouds complex divalent germanium and tin compounds? A DFT study. Organometallics 31, 1605–1617 (2012).

    Article  CAS  Google Scholar 

  49. Takagi, N. & Nagase, S. Substituent effects on germanium−germanium and tin−tin triple bonds. Organometallics 20, 5498–5500 (2001).

    Article  CAS  Google Scholar 

  50. Kostić, N. & Fenske, R. F. Molecular orbital study of bonding, conformations, and reactivity of transition-metal complexes containing unsaturated organic ligands. Electrophilic and nucleophilic additions to acetylide, vinylidene, vinyl, and carbene ligands. Organometallics 1, 974–982 (1982).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Marie Curie Intra-European Fellowships programme of the European Union (PIEF-GA-2013-622806) and the Engineering and Physical Sciences Research Council (EP/L025000/1).

Author information

Authors and Affiliations

Authors

Contributions

A.R. synthesized and characterized the compounds. A.R. and J.C. collected the single-crystal X-ray crystallographic data and solved the crystal structures. A.R. and H.N. carried out the DFT calculations. S.A. generated and managed the project and wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Simon Aldridge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1046 kb)

Supplementary information

Crystallographic data for compound 1 (CIF 34 kb)

Supplementary information

Structure factors file for compound 1 (FCF 547 kb)

Supplementary information

Crystallographic data for compound 2 (CIF 8685 kb)

Supplementary information

Crystallographic data for compound 3.1/2(C7H8) (CIF 1658 kb)

Supplementary information

Crystallographic data for compound 4 (CIF 1630 kb)

Supplementary information

Crystallographic data for compound 5 (CIF 1137 kb)

Supplementary information

Crystallographic data for compound 6 (CIF 643 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rit, A., Campos, J., Niu, H. et al. A stable heavier group 14 analogue of vinylidene. Nature Chem 8, 1022–1026 (2016). https://doi.org/10.1038/nchem.2597

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2597

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing