Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation


Ammonia synthesis under mild conditions is a goal that has been long sought after. Previous investigations have shown that adsorption and transition-state energies of intermediates in this process on transition metals (TMs) scale with each other. This prevents the independent optimization of these energies that would result in the ideal catalyst: one that activates reactants well, but binds intermediates relatively weakly. Here we demonstrate that these scaling relations can be broken by intervening in the TM-mediated catalysis with a second catalytic site, LiH. The negatively charged hydrogen atoms of LiH act as strong reducing agents, which remove activated nitrogen atoms from the TM or its nitride (TMN), and as an immediate source of hydrogen, which binds nitrogen atoms to form LiNH2. LiNH2 further splits H2 heterolytically to give off NH3 and regenerate LiH. This synergy between TM (or TMN) and LiH creates a favourable pathway that allows both early and late 3d TM–LiH composites to exhibit unprecedented lower-temperature catalytic activities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Thermodynamic analyses of NH3 synthesis over TM(N)–LiH composites.
Figure 2: Mechanistic proposal and validation of the two-active-centre catalysis.
Figure 3: Catalytic performances of the TM(N)–LiH composite catalysts.
Figure 4: Kinetic parameters of the TM(N)–LiH composite catalysts for NH3 synthesis.


  1. 1

    Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Burgess, B. K. & Lowe, D. J. Mechanism of molybdenum nitrogenase. Chem. Rev. 96, 2983–3011 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Schlögl, R. Catalytic synthesis of ammonia—a ‘never-ending story’? Angew. Chem. Int. Ed. 42, 2004–2008 (2003).

    Article  Google Scholar 

  4. 4

    Kojima, R. & Aika, K. Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis. Chem. Lett. 29, 514–515 (2000).

    Article  Google Scholar 

  5. 5

    Jacobsen, C. J. H. et al. Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 123, 8404–8405 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 4, 934–940 (2012).

    CAS  Article  Google Scholar 

  7. 7

    Zhu, D., Zhang, L. H., Ruther, R. E. & Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nature Mater. 12, 836–841 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Licht, S. et al. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3 . Science 345, 637–640 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Yandulov, D. V. & Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301, 76–78 (2003).

    CAS  Google Scholar 

  10. 10

    Arashiba, K., Miyake, Y. & Nishibayashi, Y. A molybdenum complex bearing PNP-type pincer ligands leads to the catalytic reduction of dinitrogen into ammonia. Nat. Chem. 3, 120–125 (2011).

    CAS  Article  Google Scholar 

  11. 11

    Anderson, J. S., Rittle, J. & Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501, 84–88 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Montemore, M. M. & Medlin, J. W. Scaling relations between adsorption energies for computational screening and design of catalysts. Catal. Sci. Technol. 4, 3748–3761 (2014).

    CAS  Article  Google Scholar 

  13. 13

    Pallassana, V. & Neurock, M. Electronic factors governing ethylene hydrogenation and dehydrogenation activity of pseudomorphic Pd–ML/Re(0001), Pd–ML/Ru(0001), Pd(111), and Pd–ML/Au(111) surfaces. J. Catal. 191, 301–317 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Abild-Pedersen, F. et al. Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. Phys. Rev. Lett. 99, 016105 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Calle-Vallejo, F., Loffreda, D., Koper, M. T. M. & Sautet, P. Introducing structural sensitivity into adsorption-energy scaling relations by means of coordination numbers. Nat. Chem. 7, 403–410 (2015).

    CAS  Article  Google Scholar 

  16. 16

    Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  Google Scholar 

  17. 17

    Chen, Y., Salciccioli, M. & Vlachos, D. G. An efficient reaction pathway search method applied to the decomposition of glycerol on platinum. J. Phys. Chem. C 115, 18707–18720 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Medford, A. J. et al. From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 328, 36–42 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Vojvodic, A. et al. Exploring the limits: a low-pressure, low-temperature Haber–Bosch process. Chem. Phys. Lett. 598, 108–112 (2014).

    CAS  Article  Google Scholar 

  20. 20

    Akagi, F., Matsuo, T. & Kawaguchi, H. Dinitrogen cleavage by a diniobium tetrahydride complex: formation of a nitride and its conversion into imide species. Angew. Chem. Int. Ed. 46, 8778–8781 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Avenier, P. et al. Dinitrogen dissociation on an isolated surface tantalum atom. Science 317, 1056–1060 (2007).

    CAS  Article  Google Scholar 

  22. 22

    Shima, T. et al. Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex. Science 340, 1549–1552 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Pfirrmann, S., Limberg, C., Herwig, C., Stosser, R. & Ziemer, B. A dinuclear nickel(I) dinitrogen complex and its reduction in single-electron steps. Angew. Chem. Int. Ed. 48, 3357–3361 (2009).

    CAS  Article  Google Scholar 

  24. 24

    King, D. A. & Sebba, F. Catalytic synthesis of ammonia over vanadium nitride containing oxygen. 1. The reaction mechanism. J. Catal. 4, 253–259 (1965).

    CAS  Article  Google Scholar 

  25. 25

    Mittasch, A. Early studies of multicomponent catalysts. Adv. Catal. 2, 81–104 (1950).

    Google Scholar 

  26. 26

    Ertl, G. Surface science and catalysis—studies on the mechanism of ammonia synthesis: the P. H. Emmett award address. Catal. Rev. Sci. Eng. 21, 201–223 (1980).

    CAS  Article  Google Scholar 

  27. 27

    Fernandez, E. M. et al. Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew. Chem. Int. Ed. 47, 4683–4686 (2008).

    CAS  Article  Google Scholar 

  28. 28

    Scholten, J. J. F. & Zwietering, P. Kinetics of the chemisorption of nitrogen on ammonia-synthesis catalysts. Trans. Faraday Soc. 53, 1363–1370 (1957).

    CAS  Article  Google Scholar 

  29. 29

    Stoltze, P. & Nørskov, J. K. Bridging the ‘pressure gap’ between ultrahigh-vacuum surface physics and high-pressure catalysis. Phys. Rev. Lett. 55, 2502–2505 (1985).

    CAS  Article  Google Scholar 

  30. 30

    Chen, P., Xiong, Z. T., Luo, J. Z., Lin, J. Y. & Tan, K. L. Interaction of hydrogen with metal nitrides and imides. Nature 420, 302–304 (2002).

    CAS  Article  Google Scholar 

  31. 31

    Leng, H. Y., Ichikawa, T., Hino, S. & Fujii, H. Investigation of reaction between LiNH2 and H2 . J. Alloys Compd 463, 462–465 (2008).

    CAS  Article  Google Scholar 

  32. 32

    Goshome, K. et al. Ammonia synthesis via non-equilibrium reaction of lithium nitride in hydrogen flow condition. Mater. Trans. 56, 410–414 (2015).

    CAS  Article  Google Scholar 

  33. 33

    Chen, P., Xiong, Z. T., Luo, J. Z., Lin, J. Y. & Tan, K. L. Interaction between lithium amide and lithium hydride. J. Phys. Chem. B 107, 10967–10970 (2003).

    CAS  Article  Google Scholar 

  34. 34

    Tanabe, Y. & Nishibayashi, Y. Developing more sustainable processes for ammonia synthesis. Coord. Chem. Rev. 257, 2551–2564 (2013).

    CAS  Article  Google Scholar 

  35. 35

    Schlögl, R. in Handbook of Heterogeneous Catalysis (eds Ertl, G., Knözinger, H., Schüth, F. & Weitkamp, J.) 2501–2575 (Wiley, 2008).

    Google Scholar 

  36. 36

    Hagen, S. et al. Ammonia synthesis with barium-promoted iron–cobalt alloys supported on carbon. J. Catal. 214, 327–335 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Rosowski, F. et al. Ruthenium catalysts for ammonia synthesis at high pressures: preparation, characterization, and power-law kinetics. Appl. Catal. A 151, 443–460 (1997).

    CAS  Article  Google Scholar 

  38. 38

    Miyaoka, H. et al. Improvement of reaction kinetics by metal chloride on ammonia and lithium hydride system. Int. J. Hydrogen Energy 37, 16025–16030 (2012).

    CAS  Article  Google Scholar 

  39. 39

    Kojima, R. & Aika, K. Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis. Part 2. Kinetic study. Appl. Catal. A 218, 121–128 (2001).

    CAS  Article  Google Scholar 

  40. 40

    Fastrup, B., Muhler, M., Nielsen, H. N. & Nielsen, L. P. The interaction of H2 and N2 with iron catalysts used for NH3 synthesis—a temperature-programmed desorption and reaction study. J. Catal. 142, 135–146 (1993).

    CAS  Article  Google Scholar 

  41. 41

    Chan, K., Tsai, C., Hansen, H. A. & Nørskov, J. K. Molybdenum sulfides and selenides as possible electrocatalysts for CO2 reduction. ChemCatChem 6, 1899–1905 (2014).

    CAS  Article  Google Scholar 

  42. 42

    Koel, B. E. & Kim, J. in Handbook of Heterogeneous Catalysis (eds Ertl, G., Knözinger, H., Schüth, F. & Weitkamp, J.) 1593–1624 (Wiley, 2008).

    Google Scholar 

  43. 43

    Aika, K., Takano, T. & Murata, S. Preparation and characterization of chlorine-free ruthenium catalyst and the promoter effect in ammonia synthesis. 3. A magnesia-supported ruthenium catalyst. J. Catal. 136, 126–140 (1992).

    CAS  Article  Google Scholar 

  44. 44

    Yin, S. F., Xu, B. Q., Zhou, X. P. & Au, C. T. A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl. Catal. A 277, 1–9 (2004).

    CAS  Article  Google Scholar 

  45. 45

    Guo, J. P. et al. Lithium imide synergizes with 3d transition metal nitrides leading to unprecedented catalytic activities. Angew. Chem. Int. Ed. 54, 2950–2954 (2015).

    CAS  Article  Google Scholar 

  46. 46

    Hino, S., Ichikawa, T. & Kojima, Y. Thermodynamic properties of metal amides determined by ammonia pressure-composition isotherms. J. Chem. Thermodyn. 42, 140–143 (2010).

    CAS  Article  Google Scholar 

  47. 47

    Binnewies, M. & Milke, E. Thermochemical Data of Elements and Compounds 2nd edn (Wiley, 2002).

    Google Scholar 

  48. 48

    Zhang, J. Studies on Thermodynamics and Kinetics of Ferromanganese Nitriding PhD thesis, Chongqing Univ. (2004).

  49. 49

    Aika, K. & Tamaru, K. in Ammonia: Catalysis and Manufacture (ed. Nielsen, A.) 103–148 (Springer, 1995).

    Google Scholar 

  50. 50

    Imai, Y., Sohma, M. & Suemasu, T. Energetic stability and magnetic moment of tri-, tetra-, and octa-ferromagnetic element nitrides predicted by first-principle calculations. J. Alloys Compd 611, 440–445 (2014).

    CAS  Article  Google Scholar 

Download references


This work is dedicated to K. R. Tsai for his enlightenment and encouragement. The authors thank Z. Xiong for his earlier efforts in this study, and T. Zhang and X. Bao for beneficial discussions. The authors also thank the Dalian Institute of Chemical Physics (DICP DMTO201504), the Project of National Science Funds for Distinguished Young Scholars (51225206) and the Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM) for financial support. We also thank the Shanghai Synchrotron Radiation Facility (BL14W1) for providing beam time.

Author information




P.C. conceived the research and wrote the paper. J.G. coordinated the experimental work. P.W., F.C., W.G. and J.G. performed the synthesis, characterization and activity tests for the Fe–, Mn–, Co– and Cr–LiH catalysts, respectively. G.W. and T.H. helped with data analyses. P.W. and F.C. contributed equally to this work. All the authors discussed the results of the manuscript.

Corresponding authors

Correspondence to Jianping Guo or Ping Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 614 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Chang, F., Gao, W. et al. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nature Chem 9, 64–70 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing