Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dearomative dihydroxylation with arenophiles

A Corrigendum to this article was published on 21 October 2016

This article has been updated

Abstract

Aromatic hydrocarbons are some of the most elementary feedstock chemicals, produced annually on a million metric ton scale, and are used in the production of polymers, paints, agrochemicals and pharmaceuticals. Dearomatization reactions convert simple, readily available arenes into more complex molecules with broader potential utility, however, despite substantial progress and achievements in this field, there are relatively few methods for the dearomatization of simple arenes that also selectively introduce functionality. Here we describe a new dearomatization process that involves visible-light activation of small heteroatom-containing organic molecules—arenophiles—that results in their para-cycloaddition with a variety of aromatic compounds. The approach uses N–N-arenophiles to enable dearomative dihydroxylation and diaminodihydroxylation of simple arenes. This strategy provides direct and selective access to highly functionalized cyclohexenes and cyclohexadienes and is orthogonal to existing chemical and biological dearomatization processes. Finally, we demonstrate the synthetic utility of this strategy with the concise synthesis of several biologically active compounds and natural products.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Current strategies in dearomative functionalization of arenes, which include this work.
Figure 2: Mechanistic considerations and necessary criteria for arenophile reactivity.
Figure 3: Synthetic applications of dearomative dihydroxylation.

Change history

  • 22 September 2016

    In the version of this Article originally published, in the Figure 2 caption, the HOMO–LUMO gap of the arene, rather than the arenophile, was described as the first requirement for arenophile reactivity. Furthermore, in the caption for Table 3, an oversight resulted in the inclusion of p-TsNH2 as the additive, however, the additive used in this reaction was citric acid (0.5 equiv.); and 2.0 equivalents of NMO were used. This has been corrected in the online versions of this Article.

References

  1. 1

    Roche, S. P. & Porco, J. A. Dearomatization strategies in the synthesis of complex natural products. Angew. Chem. Int. Ed. 50, 4068–4093 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Pape, A. R., Kaliappan, K. P. & Kündig, E. P. Transition-metal-mediated dearomatization reactions. Chem. Rev. 100, 2917–2940 (2000).

    CAS  Article  Google Scholar 

  3. 3

    López Ortiz, F., Iglesias, M. J., Fernández, I., Andújar Sánchez, C. M. & Ruiz Gómez, G. Nucleophilic dearomatizing (DNAr) reactions of aromatic C,H-systems. A mature paradigm in organic synthesis. Chem. Rev. 107, 1580–1691 (2007).

    Article  Google Scholar 

  4. 4

    Pouységu, L., Deffieux, D. & Quideau, S. Hypervalent iodine-mediated phenol dearomatization in natural product synthesis. Tetrahedron 66, 2235–2261 (2010).

    Article  Google Scholar 

  5. 5

    Zhuo, C.-X., Zhang, W. & You, S.-L. Catalytic asymmetric dearomatization reactions. Angew. Chem. Int. Ed. 51, 12662–12686 (2012).

    Article  Google Scholar 

  6. 6

    Parker, K. A. & Fokas, D. Convergent synthesis of (±)-dihydroisocodeine in 11 steps by the tandem radical cyclization strategy. A formal total synthesis of (±)-morphine. J. Am. Chem. Soc. 114, 9688–9689 (1992).

    CAS  Article  Google Scholar 

  7. 7

    Varghese, V. & Hudlicky, T. Short chemoenzymatic total synthesis of ent-hydromorphone: an oxidative dearomatization/intramolecular [4+2] cycloaddition/amination sequence. Angew. Chem. Int. Ed. 53, 4355–4358 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Tissot, M. et al. Gram-scale enantioselective formal synthesis of morphine through an orthopara oxidative phenolic coupling strategy. Angew. Chem. Int. Ed. 53, 13498–13501 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Charest, M. G., Lerner, C. D., Brubaker, J. D., Siegel, D. R. & Myers, A. G. A convergent enantioselective route to structurally diverse 6-deoxytetracycline antibiotics. Science 308, 395–398 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Zutter, U., Iding, H., Spurr, P. & Wirz, B. New, efficient synthesis of oseltamivir phosphate (Tamiflu) via enzymatic desymmetrization of a meso-1,3-cyclohexanedicarboxylic acid diester. J. Org. Chem. 73, 4895–4902 (2008).

    CAS  Article  Google Scholar 

  11. 11

    Shie, J.-J., Fang, J.-M. & Wong, C.-H. A concise and flexible synthesis of the potent anti-influenza agents Tamiflu and Tamiphosphor. Angew. Chem. Int. Ed. 47, 5788–5791 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Sullivan, B., Carrera, I., Drouin, M. & Hudlicky, T. Symmetry-based design for the chemoenzymatic synthesis of oseltamivir (Tamiflu) from ethyl benzoate. Angew. Chem. Int. Ed. 48, 4229–4231 (2009).

    CAS  Article  Google Scholar 

  13. 13

    Rabideau, P. W. & Marcinow, Z. The Birch reduction of aromatic compounds. Org. React. 42, 1–334 (1992).

    CAS  Google Scholar 

  14. 14

    Moriarty, R. M. & Prakash, O. M. Oxidation of phenolic compounds with organohypervalent iodine reagents. Org. React. 57, 327–415 (2001).

    CAS  Google Scholar 

  15. 15

    Cornelisse, J. The meta photocycloaddition of arenes to alkenes. Chem. Rev. 93, 615–669 (1993).

    CAS  Article  Google Scholar 

  16. 16

    Kündig, E. P. & Pape, A. Dearomatization via η6-arene complexes. Top. Organomet. Chem. 7, 71–94 (2004).

    Article  Google Scholar 

  17. 17

    Keane, J. M. & Harman, W. D. A new generation of π-basic dearomatization agents. Organometallics 24, 1786–1798 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Smith, P. L., Chordia, M. D. & Dean Harman, W. Synthetic applications of the dearomatization agent pentaammineosmium(II). Tetrahedron 57, 8203–8225 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Todd, M. A., Sabat, M., Myers, W. H., Smith, T. M. & Harman, W. D. Stereoselective umpolung tandem addition of heteroatoms to phenol. J. Am. Chem. Soc. 130, 6906–6907 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Jung, P. M. J., Motherwell, W. B. & Williams, A. S. Stereochemical observations on the bromate induced monobromopentahydroxylation of benzene by catalytic photoinduced charge-transfer osmylation. A concise synthesis of (±)-pinitol. Chem. Commun. 1283–1284 (1997).

  21. 21

    Johnson, R. A. Microbial arene oxidations. Org. React. 63, 117–264 (2004).

    CAS  Google Scholar 

  22. 22

    Boyd, D. R. & Bugg, T. D. H. Arene cis-dihydrodiol formation: from biology to application. Org. Biomol. Chem. 4, 181–192 (2006).

    CAS  Article  Google Scholar 

  23. 23

    McCullough, J. J. Photoadditions of aromatic compounds. Chem. Rev. 87, 811–860 (1987).

    CAS  Article  Google Scholar 

  24. 24

    Streit, U. & Bochet, C. G. The arene–alkene photocycloaddition. Beilstein J. Org. Chem. 7, 525–542 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Wender, P. A. et al. Arene–alkene cycloadditions and organic synthesis. Pure Appl. Chem. 62, 1597–1602 (2009).

    Article  Google Scholar 

  26. 26

    Hamrock, S. J. & Sheridan, R. S. Para photoaddition of N-methyltriazolinedione to benzene. Synthesis of energy-rich azo compounds comprising benzene + nitrogen. J. Am. Chem. Soc. 111, 9247–9249 (1989).

    CAS  Article  Google Scholar 

  27. 27

    Zhang, G. & Musgrave, C. B. Comparison of DFT methods for molecular orbital Eigenvalue calculations. J. Phys. Chem. A 111, 1554–1561 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Sharpless, K. B. et al. The osmium-catalyzed asymmetric dihydroxylation: a new ligand class and a process improvement. J. Org. Chem. 57, 2768–2771 (1992).

    CAS  Article  Google Scholar 

  29. 29

    Gypser, A., Michel, D., Nirschl, D. S. & Sharpless, K. B. Dihydroxylation of polyenes using Narasaka's modification of the Upjohn procedure. J. Org. Chem. 63, 7322–7327 (1998).

    CAS  Article  Google Scholar 

  30. 30

    Breton, G. W. & Hoke, K. R. Application of radical cation spin density maps toward the prediction of photochemical reactivity between N-methyl-1,2,4-triazoline-3,5-dione and substituted benzenes. J. Org. Chem. 78, 4697–4707 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Rickborn, B. The retro-Diels–Alder reaction. Part II. Dienophiles with one or more heteroatoms. Org. React. 53, 223–629 (1998).

    CAS  Google Scholar 

  32. 32

    Lawlor, D. A. et al. Hyperaromatic stabilization of arenium ions: a remarkable cis stereoselectivity of nucleophilic trapping of β-hydroxyarenium ions by water. J. Am. Chem. Soc. 133, 19718–19728 (2011).

    CAS  Article  Google Scholar 

  33. 33

    Nelsen, S. F., Trieber, D. A., Wolff, J. J., Powell, D. R. & Rogers-Crowley, S. Intramolecular electron transfer between doubly six σ-bond-linked trialkyldiazenium cation and diazenyl radical units. J. Am. Chem. Soc. 119, 6873–6882 (1997).

    CAS  Article  Google Scholar 

  34. 34

    Burk, M. J. & Feaster, J. E. Enantioselective hydrogenation of the C=N group: a catalytic asymmetric reductive amination procedure. J. Am. Chem. Soc. 114, 6266–6267 (1992).

    CAS  Article  Google Scholar 

  35. 35

    Kjell, D. P. & Sheridan, R. S. Photochemical cycloaddition of N-methyltriazolinedione to naphthalene. J. Am. Chem. Soc. 106, 5368–5370 (1984).

    CAS  Article  Google Scholar 

  36. 36

    Hamrock, S. J. & Sheridan, R. S. Photochemical Diels–Alder addition of N-methyltriazolinedione to phenanthrene. Tetrahedron Lett. 29, 5509–5512 (1988).

    CAS  Article  Google Scholar 

  37. 37

    Kjell, D. P. & Sheridan, R. S. A photochemical Diels–Alder reaction of N-methyltriazolinedione. J. Photochem. 28, 205–214 (1985).

    CAS  Article  Google Scholar 

  38. 38

    Breton, G. W. & Newton, K. A. Further studies of the thermal and photochemical Diels−Alder reactions of N-methyl-1,2,4-triazoline-3,5-dione (MeTAD) with naphthalene and some substituted naphthalenes. J. Org. Chem. 65, 2863–2869 (2000).

    CAS  Article  Google Scholar 

  39. 39

    Turner, D. W. in Advances in Physical Organic Chemistry Vol. 4 (ed. Gold, V.) 31–71 (Academic Press, 1966).

    Google Scholar 

  40. 40

    Balci, M., Sütbeyaz, Y. & Secen, H. Conduritols and related compounds. Tetrahedron 46, 3715–3742 (1990).

    CAS  Article  Google Scholar 

  41. 41

    Frazier, C. P., Engelking, J. R. & Read de Alaniz, J. Copper-catalyzed aerobic oxidation of hydroxamic acids leads to a mild and versatile acylnitroso ene reaction. J. Am. Chem. Soc. 133, 10430–10433 (2011).

    CAS  Article  Google Scholar 

  42. 42

    Nobuji, Y. et al. Novel herbicidal MK7607 and its manufacture with Curvularia. Japan Kokai Tokkyo Koho, Japanese Patent 06306000 (1994).

  43. 43

    Cimmino, A. et al. Phomentrioloxin, a fungal phytotoxin with potential herbicidal activity, and its derivatives: a structure–activity relationship study. J. Agric. Food Chem. 61, 9645–9649 (2013).

    CAS  Article  Google Scholar 

  44. 44

    Ma, X., Banwell, M. G. & Willis, A. C. Chemoenzymatic total synthesis of the phytotoxic geranylcyclohexentriol (−)-phomentrioloxin. J. Nat. Prod. 76, 1514–1518 (2013).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University of Illinois for generous support of this work. E.H.S. is a Springborn Graduate Fellow and J.P. is a Fellow of the German Research Foundation (DFG). We thank S. E. Denmark and P. J. Hergenrother (University of Illinois) for critical proofreading of this manuscript. We dedicate this article to K. C. Nicolaou on the occasion of his 70th birthday.

Author information

Affiliations

Authors

Contributions

E.H.S., J.P., J.F. and D.R.H. conducted the experiments, analysed the data and prepared the Supplementary Information. E.H.S., J.P. and D.S. conceived and designed the project, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to David Sarlah.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8141 kb)

Supplementary information

Crystallographic data for compound 5a (CIF 966 kb)

Supplementary information

Structure factors file for compound 5a (FCF 108 kb)

Supplementary information

Crystallographic data for compound 8a (CIF 989 kb)

Supplementary information

Structure factors file for compound 8a (FCF 242 kb)

Supplementary information

Crystallographic data for compound Ac-9a (CIF 597 kb)

Supplementary information

Structure factors file for compound Ac-9a (FCF 53 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Southgate, E., Pospech, J., Fu, J. et al. Dearomative dihydroxylation with arenophiles. Nature Chem 8, 922–928 (2016). https://doi.org/10.1038/nchem.2594

Download citation

Further reading

Search

Quick links