Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deep-hole transfer leads to ultrafast charge migration in DNA hairpins

Abstract

Charge transport through the DNA double helix is of fundamental interest in chemistry and biochemistry, but also has potential technological applications such as for DNA-based nanoelectronics. For the latter, it is of considerable interest to explore ways to influence or enhance charge transfer. In this Article we demonstrate a new mechanism for DNA charge transport, namely ‘deep-hole transfer’, which involves long-range migration of a hole through low-lying electronic states of the nucleobases. Here, we demonstrate, in a combined experimental and theoretical study, that it is possible to achieve such transfer behaviour by changing the energetics of charge injection. This mechanism leads to an enhancement in transfer rates by up to two orders of magnitude and much weaker distance dependence. This transfer is faster than relaxation to the lowest-energy state, setting this mechanism apart from those previously described. This opens up a new direction to optimize charge transfer in DNA with unprecedented charge-transfer rates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures and energetics of molecular fragments.
Figure 2: Femtosecond transient spectra of the hairpins.
Figure 3: Comparison of the rate constants for charge separation obtained for NDI–An–SD and SA–An–SD hairpins.
Figure 4: Model system for hole transfer simulations, where four propagating states and one trap state are considered for each adenine.
Figure 5: Simulated hole dynamics in NDI–A3–SD.

Similar content being viewed by others

References

  1. Schuster, G. B. (ed.) Topics in Current Chemistry Vols 236 and 237 (Springer, 2004).

    Google Scholar 

  2. Wagenknecht, H. A. Charge Transfer in DNA (Wiley-VCH, 2005).

    Book  Google Scholar 

  3. Genereux, J. C. & Barton, J. K. Mechanisms for DNA charge transport. Chem. Rev. 110, 1642–1662 (2010).

    Article  CAS  Google Scholar 

  4. Lewis, F. D. Distance-dependent electronic interactions across DNA base pairs. Charge transport, exciton coupling, and energy transfer. Israel J. Chem. 53, 350–365 (2013).

    Article  CAS  Google Scholar 

  5. Kuzuya, A. & Ohya, Y. Nanomechanical molecular devices made of DNA origami. Acc. Chem. Res. 47, 1742–1749 (2014).

    Article  CAS  Google Scholar 

  6. Young, R. M. et al. Charge transport across DNA-based three-way junctions. J. Am. Chem. Soc. 137, 5113–5122 (2015).

    Article  CAS  Google Scholar 

  7. Xiang, L. et al. Intermediate tunneling-hopping regime in DNA charge transport. Nature Chem. 7, 221–226 (2015).

    Article  CAS  Google Scholar 

  8. Murphy, C. J. et al. Long-range photoinduced electron transfer through a DNA helix. Science 262, 1025–1029 (1993).

    Article  CAS  Google Scholar 

  9. Kawai, K. & Majima, T. Hole transfer kinetics of DNA. Acc. Chem. Res. 46, 2616–2625 (2013).

    Article  CAS  Google Scholar 

  10. Lewis, F. D. et al. Crossover from superexchange to hopping as the mechanism for photoinduced charge transfer in DNA hairpin conjugates. J. Am. Chem. Soc. 128, 791–800 (2006).

    Article  CAS  Google Scholar 

  11. Lewis, F. D., Zhu, H., Daublain, P., Cohen, B. & Wasielewski, M. R. Hole mobility in DNA A-tracts. Angew. Chem. Int. Ed. 45, 7982–7985 (2006).

    Article  CAS  Google Scholar 

  12. Grozema, F. C. et al. Effect of GC base pairs on charge transfer through DNA hairpins: the importance of electrostatic interactions. J. Am. Chem. Soc. 131, 14204–14205 (2009).

    Article  CAS  Google Scholar 

  13. Lewis, F. D., Daublain, P., Cohen, B., Vura-Weis, J. & Wasielewski, M. R. The influence of guanine on DNA hole transport efficiency. Angew. Chem. Int. Ed. 47, 3798–3800 (2008).

    Article  CAS  Google Scholar 

  14. Giese, B., Amaudrut, J., Köhler, A.-K., Spormann, M. & Wessely, S. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature 412, 318–320 (2001).

    Article  CAS  Google Scholar 

  15. Liu, C.-S. & Schuster, G. B. Base sequence effects in radical cation migration in duplex DNA: support for the polaron-like hopping model. J. Am. Chem. Soc. 125, 6098–6102 (2003).

    Article  CAS  Google Scholar 

  16. Felts, A. K., Pollard, W. T. & Friesner, R. A. Multilevel Redfield treatment of bridge-mediated long-range electron transfer: a mechanism for anomalous distance dependence. J. Phys. Chem. 99, 2929–2940 (1995).

    Article  CAS  Google Scholar 

  17. Jortner, J., Bixon, M., Langenbacher, T. & Michel-Beyerle, M. E. Charge transfer and transport in DNA. Proc. Natl Acad. Sci. USA 95, 12759–12765 (1998).

    Article  CAS  Google Scholar 

  18. Zhang, Y., Liu, C., Balaeff, A., Skourtis, S. S. & Beratan, D. N. Biological charge transfer via flickering resonance. Proc. Natl Acad. Sci. USA 111, 10049–10054 (2014).

    Article  CAS  Google Scholar 

  19. Grozema, F. C. et al. Effect of structural dynamics on charge transfer in DNA hairpins. J. Am. Chem. Soc. 130, 5157–5166 (2008).

    Article  CAS  Google Scholar 

  20. Blaustein, G. S., Lewis, F. D. & Burin, A. L. Kinetics of charge separation in poly(A)-poly(T) DNA hairpins. J. Phys. Chem. B 114, 6732–6739 (2010).

    Article  CAS  Google Scholar 

  21. Renaud, N., Berlin, Y. A., Lewis, F. D. & Ratner, M. A. Between superexchange and hopping: an intermediate charge-transfer mechanism in poly(A)-poly(T) DNA hairpins. J. Am. Chem. Soc. 135, 3953–3963 (2013).

    Article  CAS  Google Scholar 

  22. Lewis, F. D. et al. Driving force dependence of electron transfer dynamics in DNA. J. Am. Chem. Soc. 122, 12346–12351 (2000).

    Article  CAS  Google Scholar 

  23. Lewis, F. D., Zhang, L., Kelley, R. F., McCamant, D. & Wasielewski, M. R. A perylenedicarboxamide linker for DNA hairpins. Tetrahedron 63, 3457–3464 (2007).

    Article  CAS  Google Scholar 

  24. Singh, A. P. N. et al. Raising the barrier for photoinduced DNA charge injection with a cyclohexyl artificial base pair. Faraday Discuss. 185, 105–120 (2015).

    Article  CAS  Google Scholar 

  25. Beljonne, D., Pourtois, G., Ratner, M. A. & Bredas, J. L. Pathways for photoinduced charge separation in DNA hairpins. J. Am. Chem. Soc. 125, 14510–14517 (2003).

    Article  CAS  Google Scholar 

  26. Lewis, F. D. et al. DNA-mediated exciton coupling and electron transfer between donor and acceptor stilbenes separated by a variable number of base pairs. J. Am. Chem. Soc. 126, 8206–8215 (2004).

    Article  CAS  Google Scholar 

  27. Rogers, J. E. & Kelly, L. A. Nucleic acid oxidation mediated by naphthalene and benzophenone imide and diimide derivatives: consequences for DNA redox chemistry. J. Am. Chem. Soc. 121, 3854–3861 (1999).

    Article  CAS  Google Scholar 

  28. Kobayashi, K. Evidence of formation of adenine dimer cation radical in DNA: the importance of adenine base stacking. J. Phys. Chem. B 114, 5600–5604 (2010).

    Article  CAS  Google Scholar 

  29. Lewis, F. D., Liu, X., Miller, S. E., Hayes, R. T. & Wasielewski, M. R. Dynamics of electron injection in DNA hairpins. J. Am. Chem. Soc. 124, 11280–11281 (2002).

    Article  CAS  Google Scholar 

  30. Harris, M. A. et al. Direct observation of the hole carriers in DNA photoinduced charge transport. J. Am. Chem. Soc. 138, 5491–5494 (2016).

    Article  CAS  Google Scholar 

  31. Renaud, N., Berlin, Y. A. & Ratner, M. A. Impact of a single base pair substitution on the charge transfer rate along short DNA hairpins. Proc. Natl Acad. Sci. USA 110, 14867–14871 (2013).

    Article  CAS  Google Scholar 

  32. Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2007).

    Book  Google Scholar 

  33. Mantz, Y. A., Luigi, G. F., Teodoro, L. & Michele, P. Solvent effects on charge spatial extent in DNA and implications for transfer. Phys. Rev. Lett. 99, 058104 (2007).

    Article  Google Scholar 

  34. Basko, D. M. & Conwell, E. M. Effect of solvation on hole motion in DNA. Phys. Rev. Lett. 88, 098102 (2002).

    Article  CAS  Google Scholar 

  35. Voityuk, A. A. Charge transfer in DNA: hole charge is confined to a single base pair due to solvation effects. J. Chem. Phys. 122, 204904 (2005).

    Article  Google Scholar 

  36. Vura-Weis, J., Wasielewski, M. R., Thazhathveetil, A. K. & Lewis, F. D. Efficient charge transport in DNA diblock oligomers J. Am. Chem. Soc. 131, 9722–9727 (2009).

    Article  CAS  Google Scholar 

  37. Thazhathveetil, A. K., Trifonov, A., Wasielewski, M. R. & Lewis, F. D. Increasing the speed limit for hole transport in DNA. J. Am. Chem. Soc. 133, 11485–11487 (2011).

    Article  CAS  Google Scholar 

  38. Mishra, A. K., Young, R. M., Wasielewski, M. R. & Lewis, F. D. Wirelike charge transport dynamics for DNA–lipid complexes in chloroform. J. Am. Chem. Soc. 136, 15792–15797 (2014).

    Article  CAS  Google Scholar 

  39. Young, R. M. D. et al. Ultrafast conformational dynamics of electron transfer in ExBox4+ perylene. J. Phys. Chem. A 117, 12438–12448 (2013).

    Article  CAS  Google Scholar 

  40. Brown, K. E., Veldkamp, B. S., Co, D. T. & Wasielewski, M. R. Vibrational dynamics of a perylene–perylenediimide donor–acceptor dyad probed with femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 3, 2362–2366 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division under award no. DE-FG02-96ER14604 (F.D.L.) and the US Office of Naval Research MURI grant no. N00014-11-1-0729 (M.R.W., Y.A.B. and M.A.R.). The research leading to these results has received funding from the European Research Council FP7 ERC grant agreement no. 240299 and Horizon 2020 ERC grant agreement no. 648433.

Author information

Authors and Affiliations

Authors

Contributions

A.P.N.S. and F.D.L. synthesized the DNA hairpins and performed structural characterization. M.A.H. and M.R.W. conceived and performed the transient absorption spectroscopy as well as the global analysis of the results. N.R., Y.A.B., M.A.R. and F.C.G. developed the model and performed the theoretical calculations. N.R., F.D.L. and F.C.G. wrote the paper with contributions from all authors.

Corresponding authors

Correspondence to Michael R. Wasielewski, Frederick D. Lewis or Ferdinand C. Grozema.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renaud, N., Harris, M., Singh, A. et al. Deep-hole transfer leads to ultrafast charge migration in DNA hairpins. Nature Chem 8, 1015–1021 (2016). https://doi.org/10.1038/nchem.2590

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2590

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing