Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Benzazetidine synthesis via palladium-catalysed intramolecular C−H amination


Small-sized N-heterocycles are important structures in organic synthesis and medicinal chemistry. Palladium-catalysed intramolecular aminations of the C−H bonds of unfunctionalized amine precursors have recently emerged as an attractive new method for N-heterocycle synthesis. However, the way to control the reactivity of high-valent Pd intermediates to form the desired C−N cyclized products selectively remains poorly addressed. Herein we report a strategy to control the reductive elimination (RE) pathways in high-valent Pd catalysis and apply this strategy to achieve the synthesis of highly strained four-membered benzazetidines via the Pd-catalysed intramolecular C−H amination of N-benzyl picolinamides. These reactions represent the first practical synthetic method for benzazetidines and enable access to a range of complex benzazetidines from easily obtainable starting materials. The use of a newly designed phenyliodonium dimethylmalonate reagent is critical, as oxidation of Pd(II) palladacycles with this reagent favours a kinetically controlled C−N RE pathway to give strained ring-closed products.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Strategy for the synthesis of small-sized N-heterocycles via Pd-catalysed IDCA.
Figure 2: Synthesis of benzazetidine via Pd-catalysed IDCA of PA-coupled benzylamine.
Figure 3: Substrate scope of benzazetidine synthesis.
Figure 4: Facile removal of the PA group.
Figure 5: Computational studies of Pd-catalysed IDCAs of N-benzyl PAs with PhI(OAc)2 and PhI(DMM) (R, CF3).


  1. 1

    Sweeney, J. B. Aziridines: epoxides’ ugly cousins? Chem. Soc. Rev. 31, 247–258 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Brandi, A., Cicchi, S. & Cordero, F. M. Novel syntheses of azetidines and azetidinones. Chem. Rev. 108, 3988–4035 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Alcaide, B., Almendros, P. & Aragoncillo, C. Highly reactive 4-membered ring nitrogen-containing heterocycles: synthesis and properties. Curr. Opin. Drug Discov. Devel. 13, 685–697 (2010).

    CAS  PubMed  Google Scholar 

  4. 4

    Espino, C. G. & Du Bois, J. A Rh-catalyzed C−H insertion reaction for the oxidative conversion of carbamates to oxazolidinones. Angew. Chem. Int. Ed. 40, 598–600 (2001).

    CAS  Article  Google Scholar 

  5. 5

    Hennessy, E. T. & Betley, T. A. Complex N-heterocycle synthesis via iron-catalyzed direct C–H bond amination. Science 340, 591–595 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Jeffrey, J. L. & Sarpong, R. Intramolecular C(sp3)–H amination. Chem. Sci. 4, 4092–4106 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Tsang, P. W. C., Zheng, N. & Buchwald, S. L. Combined C–H functionalization/C–N bond formation route to carbazoles. J. Am. Chem. Soc. 127, 14560–14561 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Wasa, M. & Yu, J.-Q. Synthesis of β, γ and δ-lactams via Pd(II)-catalyzed C–H activation reactions. J. Am. Chem. Soc. 130, 14058–14059 (2008).

    CAS  Article  Google Scholar 

  9. 9

    McNally, A., Haffemayer, B., Collins, B. S. L. & Gaunt, M. J. Palladium-catalysed C–H activation of aliphatic amines to give strained nitrogen heterocycles. Nature 510, 129–133 (2014).

    CAS  Article  Google Scholar 

  10. 10

    Chen, X., Engle, K. M., Wang, D.-H. & Yu, J.-Q. Palladium(II)-catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality. Angew. Chem. Int. Ed. 48, 5094–5115 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Hickman, A. J. & Sanford, M. S. High-valent organometallic copper and palladium in catalysis. Nature 484, 177–185 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Engle, K. M., Mei, T.-S., Wang, X. & Yu, J.-Q. Bystanding F+ oxidants enable selective reductive elimination from high-valent metal centers in catalysis. Angew. Chem. Int. Ed. 50, 1478–1491 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Wojciechowski, K. Aza-ortho-xylylenes in organic synthesis. Eur. J. Org. Chem. 3587–3605 (2001).

    Article  Google Scholar 

  15. 15

    Sadana, A. K., Saini, R. K. & Billups, W. E. Cyclobutarenes and related compounds. Chem. Rev. 1539–1602 (2003).

  16. 16

    Burgess, E. M. & McCullagh, L. N-Phenylbenzoazetine. J. Am. Chem. Soc. 88, 1580–1581 (1966).

    CAS  Article  Google Scholar 

  17. 17

    Beak, P. & Selling, G. W. Displacements at the nitrogen of lithio-alkoxylamides by organometallic reagents. J. Org. Chem. 54, 5574–5580 (1989).

    CAS  Article  Google Scholar 

  18. 18

    Lancaster, M. & Smith, D. J. H. Preparation and some reactions of benzazetidines. Chem. Commun. 471–472 (1980).

  19. 19

    Nadres, E. T. & Daugulis, O. Heterocycle synthesis via direct C−H/N−H coupling. J. Am. Chem. Soc. 134, 7–10 (2012).

    CAS  Article  Google Scholar 

  20. 20

    He, G., Zhao, Y., Zhang, S., Lu, C. & Chen, G. Highly efficient syntheses of azetidines, pyrrolidines, and indolines via palladium-catalyzed intramolecular amination of C(sp3)–H and C(sp2)–H bonds at the γ and δ positions. J. Am. Chem. Soc. 134, 3–6 (2012).

    CAS  Article  Google Scholar 

  21. 21

    He, G., Zhang, S., Nack, W. A. & Chen, G. Use of a readily removable auxiliary group for the synthesis of pyrrolidones by the palladium-catalyzed intramolecular amination of unactivated γ C(sp3)−H bonds. Angew. Chem. Int. Ed. 52, 11124–11128 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Engle, K. M. & Yu., J.-Q. Developing ligands for palladium(II)-catalyzed C–H functionalization. J. Org. Chem. 78, 8927–8955 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Gou, F.-R. et al. Palladium-catalyzed aryl C–H bonds activation/acetoxylation utilizing a bidentate system. Org. Lett. 11, 5726–5729 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Gary, J. B. & Sanford, M. S. Participation of carbonyl oxygen in carbon–carboxylate bond-forming reductive elimination from palladium. Organometallics 30, 6143–6149 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Nielsen, M. C., Lyngvi, E. & Schoenebeck, F. Chemoselectivity in the reductive elimination from high oxidation state palladium complexes—scrambling mechanism uncovered. J. Am. Chem. Soc. 135, 1978–1985 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Zhdankin, V. V. & Stang, P. J. Chemistry of polyvalent iodine. Chem. Rev. 108, 5299–5358 (2008).

    CAS  Article  Google Scholar 

  27. 27

    Shabashov, M. & Daugulis, O. Auxiliary-assisted palladium-catalyzed arylation and alkylation of sp2 and sp3 carbon–hydrogen bonds. J. Am. Chem. Soc. 132, 3965–3972 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Deprez, N. R. & Sanford, M. S. Synthetic and mechanistic studies of Pd-catalyzed C−H arylation with diaryliodonium salts: evidence for a bi-metallic high oxidation state Pd intermediate. J. Am. Chem. Soc. 131, 11234–11241 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Powers, D. C., Benitez, D., Tkatchouk, E., Goddard, W. A. III & Ritter, T. Bimetallic reductive elimination from dinuclear Pd(III) complexes. J. Am. Chem. Soc. 132, 14092–14103 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Powers, D. C. et al. Connecting binuclear Pd(III) and mononuclear Pd(IV) chemistry by Pd−Pd bond cleavage. J. Am. Chem. Soc. 134, 12002–12009 (2012).

    CAS  Article  Google Scholar 

Download references


G.C. thanks the State Key Laboratory of Elemento-Organic Chemistry at Nankai University and the Pennsylvania State University for financial support for the experimental part of this work. P.L. thanks the University of Pittsburgh for financial support for the computational part of the work. Calculations were performed at the Center for Simulation and Modeling at the University of Pittsburgh and the Extreme Science and Engineering Discovery Environment (XSEDE) supported by the National Science Foundation.

Author information




G.H. discovered the benzazetidine synthesis via the Pd-catalysed IDCA reaction of benzylamines, introduced the PhI(DMM) reagent, carried out most of the reaction optimization and structural determination of the reaction products and prepared the Supplementary Information. Z.G. helped in the preparation of some benzylamine substrates and contributed to the reaction optimization. G.L. conducted the computations. P.L. directed the computational studies. P.L. and G.L. prepared the computational sections of the manuscript. G.C. formulated the initial ideas of this work, supervised all the experiments, coordinated with P.L. on the computational studies and prepared most of the manuscript.

Corresponding authors

Correspondence to Gang He or Peng Liu or Gong Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 20978 kb)

Supplementary information

Crystallographic data for compound 5. (CIF 13 kb)

Supplementary information

Structure factors file for compound 5. (FCF 157 kb)

Supplementary information

Crystallographic data for complexA. (CIF 16 kb)

Supplementary information

Structure factors file for complexA. (FCF 179 kb)

Supplementary information

Crystallographic data for compound 21N. (CIF 15 kb)

Supplementary information

Structure factors file for compound 21N. (FCF 178 kb)

Supplementary information

Crystallographic data for compound 26. (CIF 11 kb)

Supplementary information

Structure factors file for compound 26. (FCF 62 kb)

Supplementary information

Crystallographic data for palladacycle complexE. (CIF 25 kb)

Supplementary information

Structure factors file for palladacycle complexE. (FCF 351 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, G., Lu, G., Guo, Z. et al. Benzazetidine synthesis via palladium-catalysed intramolecular C−H amination. Nature Chem 8, 1131–1136 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing