Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fast and selective ring-opening polymerizations by alkoxides and thioureas

Abstract

Ring-opening polymerization of lactones is a versatile approach to generate well-defined functional polyesters. Typical ring-opening catalysts are subject to a trade-off between rate and selectivity. Here we describe an effective catalytic system combining alkoxides with thioureas that catalyses rapid and selective ring-opening polymerizations. Deprotonation of thioureas by sodium, potassium or imidazolium alkoxides generates a hydrogen-bonded alcohol adduct of the thiourea anion (thioimidate). The ring-opening polymerization of L-lactide mediated by these alcohol-bonded thioimidates yields highly isotactic polylactide with fast kinetics and living polymerization behaviour, as evidenced by narrow molecular weight distributions (Mw/Mn < 1.1), chain extension experiments and minimal transesterifications. Computational studies indicate a bifunctional catalytic mechanism whereby the thioimidate activates the carbonyl of the monomer and the alcohol initiator/chain end to effect the selective ring-opening of lactones and carbonates. The high selectivity of the catalyst towards monomer propagation over transesterification is attributed to a selective activation of monomer over polymer chains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bifunctional organocatalysts.
Figure 2: MALDI-TOF MS of PLAs generated by various initiator systems with a target DP of ~50 and conversion of ~90%.
Figure 3: Calculated energies and reaction coordinate.

Similar content being viewed by others

References

  1. Hartwig, J. F. (ed.) Organotransition Metal Chemistry: From Bonding to Catalysis (University Science Books, 2009).

    Google Scholar 

  2. Martin, R. & Buchwald, S. L. Palladium-catalyzed Suzuki–Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc. Chem. Res. 41, 1461–1473 (2008).

    Article  CAS  Google Scholar 

  3. Doyle, A. G. & Jacobsen, E. N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 107, 5713–5743 (2007).

    Article  CAS  Google Scholar 

  4. Hawker, C. J. & Wooley, K. L. The convergence of synthetic organic and polymer chemistries. Science 309, 1200–1205 (2005).

    Article  CAS  Google Scholar 

  5. Ober, C. K. et al. Research in macromolecular science: challenges and opportunities for the next decade. Macromolecules 42, 465–471 (2009).

    Article  CAS  Google Scholar 

  6. Lin, S. & Waymouth, R. M . 2-Arylindene metallocenes: conformationally dynamic catalysts to control the structure and properties of polypropylenes. Acc. Chem. Res. 35, 765–773 (2002).

    Article  CAS  Google Scholar 

  7. Dubois, P., Coulembier, O. & Raquez, J. M. (eds). Handbook of Ring-Opening Polymerization (Wiley-VCH, 2009).

    Book  Google Scholar 

  8. Kamber, N. E. et al. Organocatalytic ring-opening polymerization. Chem. Rev. 107, 5813–5840 (2007).

    Article  CAS  Google Scholar 

  9. Kiesewetter, M. K., Shin, E. J., Hedrick, J. L. & Waymouth, R. M. Organocatalysis: opportunities and challenges for polymer synthesis. Macromolecules 43, 2093–2107 (2010).

    Article  CAS  Google Scholar 

  10. Thomas, C. & Bibal, B. Hydrogen-bonding organocatalysts for ring-opening polymerization. Green Chem. 16, 1687–1699 (2014).

    Article  CAS  Google Scholar 

  11. Mespouille, L., Coulembier, O., Kawalec, M., Dove, A. P. & Dubois, P. Implementation of metal-free ring-opening polymerization in the preparation of aliphatic polycarbonate materials. Prog. Polym. Sci. 39, 1144–1164 (2014).

    Article  CAS  Google Scholar 

  12. Hillmyer, M. A. & Tolman, W. B. Aliphatic polyester block polymers: renewable, degradable, and sustainable. Acc. Chem. Res. 47, 2390–2396 (2014).

    Article  CAS  Google Scholar 

  13. Chuma, A. et al. The reaction mechanism for the organocatalytic ring-opening polymerization of L-lactide using a guanidine-based catalyst: hydrogen-bonded or covalently bound? J. Am. Chem. Soc. 130, 6749–6754 (2008).

    Article  CAS  Google Scholar 

  14. Dove, A. P., Pratt, R. C., Lohmeijer, B. G. G., Waymouth, R. M. & Hedrick, J. L. Thiourea-based bifunctional organocatalysis: supramolecular recognition for living polymerization. J. Am. Chem. Soc. 127, 13798–13799 (2005).

    Article  CAS  Google Scholar 

  15. Pratt, R. C. et al. Exploration, optimization, and application of supramolecular thiourea-amine catalysts for the synthesis of lactide (co)polymers. Macromolecules 39, 7863–7871 (2006).

    Article  CAS  Google Scholar 

  16. Lohmeijer, B. G. G. et al. Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules 39, 8574–8583 (2006).

    Article  CAS  Google Scholar 

  17. Pratt, R. C., Lohmeijer, B. G. G., Long, D. A., Waymouth, R. M. & Hedrick, J. L. Triazabicyclodecene: a simple bifunctional organocatalyst for acyl transfer and ring-opening polymerization of cyclic esters. J. Am. Chem. Soc. 128, 4556–4557 (2006).

    Article  CAS  Google Scholar 

  18. Coulembier, O. et al. Hydrogen-bonding catalysts based on fluorinated alcohol derivatives for living polymerization. Angew. Chem. Int. Ed. 48, 5170–5173 (2009).

    Article  CAS  Google Scholar 

  19. Kiesewetter, M. K. et al. Cyclic guanidine organic catalysts: what is magic about triazabicyclodecene? J. Org. Chem. 74, 9490–9496 (2009).

    Article  CAS  Google Scholar 

  20. Gazeau-Bureau, S. et al. Organo-catalyzed ROP of ε-caprolactone: methanesulfonic acid competes with trifluoromethanesulfonic acid. Macromolecules 41, 3782–3784 (2008).

    Article  CAS  Google Scholar 

  21. Delcroix, D. et al. Phosphoric and phosphoramidic acids as bifunctional catalysts for the ring-opening polymerization of ε-caprolactone: a combined experimental and theoretical study. Polym. Chem. 2, 2249–2256 (2011).

    Article  CAS  Google Scholar 

  22. Makiguchi, K., Satoh, T. & Kakuchi, T. Diphenyl phosphate as an efficient cationic organocatalyst for controlled/living ring-opening polymerization of δ-valerolactone and ε-caprolactone. Macromolecules 44, 1999–2005 (2011).

    Article  CAS  Google Scholar 

  23. Coady, D. J., Fukushima, K., Horn, H. W., Rice, J. E. & Hedrick, J. L. Catalytic insights into acid/base conjugates: highly selective bifunctional catalysts for the ring-opening polymerization of lactide. Chem. Commun. 47, 3105–3107 (2011).

    Article  CAS  Google Scholar 

  24. Guillerm, B. et al. Ammonium betaines: efficient ionic nucleophilic catalysts for the ring-opening polymerization of L-lactide and cyclic carbonates. Chem. Commun. 50, 10098–10101 (2014).

    Article  CAS  Google Scholar 

  25. Culkin, D. A. et al. Zwitterionic polymerization of lactide to cyclic poly(lactide) by using N-heterocyclic carbene organocatalysts. Angew. Chem. Int. Ed. 46, 2627–2630 (2007).

    Article  CAS  Google Scholar 

  26. Nyce, G. W. et al. In situ generation of carbenes: a general and versatile platform for organocatalytic living polymerization. J. Am. Chem. Soc. 125, 3046–3056 (2003).

    Article  CAS  Google Scholar 

  27. Fevre, M., Pinaud, J., Gnanou, Y., Vignolle, J. & Taton, D. N-Heterocyclic carbenes (NHCs) as organocatalysts and structural components in metal-free polymer synthesis. Chem. Soc. Rev. 42, 2142–2172 (2013).

    Article  CAS  Google Scholar 

  28. Brown, H. A. & Waymouth, R. M. Zwitterionic ring-opening polymerization for the synthesis of high molecular weight cyclic polymers. Acc. Chem. Res. 46, 2585–2596 (2013).

    Article  CAS  Google Scholar 

  29. Zhang, L. et al. Phosphazene bases: a new category of organocatalysts for the living ring-opening polymerization of cyclic esters. Macromolecules 40, 4154–4158 (2007).

    Article  CAS  Google Scholar 

  30. Olsen, P., Odelius, K., Keul, H. & Albertsson, A.-C. Macromolecular design via an organocatalytic, monomer-specific and temperature-dependent ‘on/off switch’. High precision synthesis of polyester/polycarbonate multiblock copolymers. Macromolecules 48, 1703–1710 (2015).

    Article  CAS  Google Scholar 

  31. Alamri, H., Zhao, J., Pahovnik, D. & Hadjichristidis, N. Phosphazene-catalyzed ring-opening polymerization of ε-caprolactone: influence of solvents and initiators. Polym. Chem. 5, 5471–5478 (2014).

    Article  CAS  Google Scholar 

  32. Brown, H. A., De Crisci, A. G., Hedrick, J. L. & Waymouth, R. M. Amidine-mediated zwitterionic polymerization of lactide. ACS Macro Lett. 1, 1113–1115 (2012).

    Article  CAS  Google Scholar 

  33. Zhang, X. & Waymouth, R. M. Zwitterionic ring opening polymerization with isothioureas. ACS Macro Lett. 3, 1024–1028 (2014).

    Article  CAS  Google Scholar 

  34. Okino, T., Hoashi, Y. & Takemoto, Y. Enantioselective Michael reaction of malonates to nitroolefins catalyzed by bifunctional organocatalysts. J. Am. Chem. Soc. 125, 12672–12673 (2003).

    Article  CAS  Google Scholar 

  35. Schreiner, P. R. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem. Soc. Rev. 32, 289–296 (2003).

    Article  CAS  Google Scholar 

  36. Zhang, Z. G. & Schreiner, P. R. (Thio)urea organocatalysis—what can be learnt from anion recognition? Chem. Soc. Rev. 38, 1187–1198 (2009).

    Article  CAS  Google Scholar 

  37. Kazakov, O. I. & Kiesewetter, M. K. Cocatalyst binding effects in organocatalytic ring-opening polymerization of L-lactide. Macromolecules 48, 6121–6126 (2015).

    Article  CAS  Google Scholar 

  38. Penczek, S., Szymanski, R., Duda, A. & Baran, J. Living polymerization of cyclic esters—a route to (bio)degradable polymers. Influence of chain transfer to polymer on livingness. Macromol. Symp. 201, 261–269 (2003).

    Article  CAS  Google Scholar 

  39. Cooley, C. B. et al. Oligocarbonate molecular transporters: oligomerization-based syntheses and cell-penetrating studies. J. Am. Chem. Soc. 131, 16401–16403 (2009).

    Article  CAS  Google Scholar 

  40. Geihe, E. I. et al. Designed guanidinium-rich amphipathic oligocarbonate molecular transporters complex, deliver and release siRNA in cells. Proc. Natl Acad. Sci. USA 109, 13171–13176 (2012).

    Article  CAS  Google Scholar 

  41. Kricheldorf, H. R., Kreisersaunders, I. & Scharnagl, N. Anionic and pseudoanionic polymerization of lactones—a comparison. Makromol. Chem. Macromol. Symp. 32, 285–298 (1990).

    Article  CAS  Google Scholar 

  42. Penczek, S., Duda, A. & Libiszowski, J. Controlled polymerization of cyclic esters. Structure of initiators and of active species related to the selectivity of initiation and propagation. Macromol. Symp. 128, 241–254 (1998).

    Article  CAS  Google Scholar 

  43. Nakafuku, C. & Takehisa, S. Y. Glass transition and mechanical properties of PLLA and PDLLA-PGA copolymer blends. J. Appl. Polym. Sci. 93, 2164–2173 (2004).

    Article  CAS  Google Scholar 

  44. Perez-Casas, C. & Yatsimirsky, A. K. Detailing hydrogen bonding and deprotonation equilibria between anions and urea/thiourea derivatives. J. Org. Chem. 73, 2275–2284 (2008).

    Article  CAS  Google Scholar 

  45. Kotke, M. & Schreiner, P. R. Generally applicable organocatalytic tetrahydropyranylation of hydroxy functionalities with very low catalyst loading. Synthesis Stuttgart 2007, 779–790 (2007).

    Article  Google Scholar 

  46. Dougherty, D. A. Cation–π interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271, 163–168 (1996).

    Article  CAS  Google Scholar 

  47. Simon, L. & Goodman, J. M. The mechanism of TBD-catalyzed ring-opening polymerization of cyclic esters. J. Org. Chem. 72, 9656–9662 (2007).

    Article  CAS  Google Scholar 

  48. Bonduelle, C., Martin-Vaca, B., Cossio, F. P. & Bourissou, D. Monomer versus alcohol activation in the 4-dimethylaminopyridine-catalyzed ring-opening polymerization of lactide and lactic O-carboxylic anhydride. Chem. Eur. J. 14, 5304–5312 (2008).

    Article  CAS  Google Scholar 

  49. Susperregui, N., Delcroix, D., Martin-Vaca, B., Bourissou, D. & Maron, L. Ring-opening polymerization of ε-caprolactone catalyzed by sulfonic acids: computational evidence for bifunctional activation. J. Org. Chem. 75, 6581–6587 (2010).

    Article  CAS  Google Scholar 

  50. Kashid, S. M. & Bagchi, S. Experimental determination of the electrostatic nature of carbonyl hydrogen-bonding interactions using IR-NMR correlations. J. Phys. Chem. Lett. 5, 3211–3215 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the National Science Foundation (NSF-CHE-1306730). X.Z. acknowledges a Stanford Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

X.Z., R.M.W. and J.L.H. designed the experiments. X.Z. performed the experiments. G.O.J. performed the DFT calculations. All authors analysed the results and co-wrote the manuscript.

Corresponding author

Correspondence to Robert M. Waymouth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Jones, G., Hedrick, J. et al. Fast and selective ring-opening polymerizations by alkoxides and thioureas. Nature Chem 8, 1047–1053 (2016). https://doi.org/10.1038/nchem.2574

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2574

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing