Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The dipolar endofullerene HF@C60

Abstract

The cavity inside fullerenes provides a unique environment for the study of isolated atoms and molecules. We report the encapsulation of hydrogen fluoride inside C60 using molecular surgery to give the endohedral fullerene HF@C60. The key synthetic step is the closure of the open fullerene cage with the escape of HF minimized. The encapsulated HF molecule moves freely inside the cage and exhibits quantization of its translational and rotational degrees of freedom, as revealed by inelastic neutron scattering and infrared spectroscopy. The rotational and vibrational constants of the encapsulated HF molecules were found to be redshifted relative to free HF. The NMR spectra display a large 1H–19F J coupling typical of an isolated species. The dipole moment of HF@C60 was estimated from the temperature dependence of the dielectric constant at cryogenic temperatures and showed that the cage shields around 75% of the HF dipole.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Synthesis of HF@C60 from HF@1.
Figure 2: 19F NMR spectra of HF@C60 in the polycrystalline solid state at three different MAS frequencies.
Figure 3: Energy levels of confined HF.
Figure 4: Estimate of the electric dipole moment based on the temperature dependence of the bulk dielectric constant.

References

  1. Levitt, M. H. Spectroscopy of light-molecule endofullerenes. Phil. Trans. R. Soc. A 371, 20120429 (2013).

    Article  Google Scholar 

  2. Murata, M., Murata, Y. & Komatsu, K. Synthesis and properties of endohedral C60 encapsulating molecular hydrogen. J. Am. Chem. Soc. 128, 8024–8033 (2006).

    CAS  Article  Google Scholar 

  3. Kurotobi, K. & Murata, Y. A single molecule of water encapsulated in fullerene C60 . Science 333, 613–616 (2011).

    CAS  Article  Google Scholar 

  4. Krachmalnicoff, A., Levitt, M. H. & Whitby, R. J. An optimised scalable synthesis of H2O@C60 and a new synthesis of H2@C60 . Chem. Commun. 50, 13037–13040 (2014).

    CAS  Article  Google Scholar 

  5. Murata, M., Maeda, S., Morinaka, Y., Murata, Y. & Komatsu, K. Synthesis and reaction of fullerene C70 encapsulating two molecules of H2 . J. Am. Chem. Soc. 130, 15800–15801 (2008).

    CAS  Article  Google Scholar 

  6. Hashikawa, Y., Murata, M., Wakamiya, A. & Murata, Y. Synthesis and properties of endohedral aza[60]fullerenes: H2O@C59N and H2@C59N as their dimers and monomers. J. Am. Chem. Soc. 138, 4096–4104 (2016).

    CAS  Article  Google Scholar 

  7. Zhang, R. et al. Synthesis of a distinct water dimer inside fullerene C70 . Nature Chem. 8, 435–441 (2016).

    CAS  Article  Google Scholar 

  8. Levitt, M. H. & Horsewill, A. J. Nanolaboratories: physics and chemistry of small-molecule endofullerenes. Phil. Trans. R. Soc. A 371, 20130124 (2013).

    Article  Google Scholar 

  9. Beduz, C. et al. Quantum rotation of ortho and para-water encapsulated in a fullerene cage. Proc. Natl Acad. Sci. USA 109, 12894–12898 (2012).

    CAS  Article  Google Scholar 

  10. Lopez-Gejo, J. et al. Can H2 inside C60 communicate with the outside world? J. Am. Chem. Soc. 129, 14554–14555 (2007).

    CAS  Article  Google Scholar 

  11. Mamone, S. et al. Nuclear spin conversion of water inside fullerene cages detected by low-temperature nuclear magnetic resonance. J. Chem. Phys. 140, 194306 (2014).

    Article  Google Scholar 

  12. Mamone, S. et al. Rotor in a cage: infrared spectroscopy of an endohedral hydrogen–fullerene complex. J. Chem. Phys. 130, 081103 (2009).

    CAS  Article  Google Scholar 

  13. Meier, B. et al. Electrical detection of orthopara conversion in fullerene-encapsulated water. Nature Commun. 6, 8112 (2015).

    CAS  Article  Google Scholar 

  14. Varandas, A. J. C. A simple model for vibrational stretching in diatomics at fullerenes. Asian J. Spectrosc. 3, 79–90 (1999).

    CAS  Google Scholar 

  15. Williams, C. I., Whitehead, M. A. & Pang, L. Interaction and dynamics of endohedral gas molecules in C60 isomers and C70 . J. Phys. Chem. 97, 11652–11656 (1993).

    CAS  Article  Google Scholar 

  16. Hernández-Rojas, J., Bretón, J. & Gomez Llorente, J. M. A semi-empirical analytical potential for diatomic molecules at spherical fullerenes. Chem. Phys. Lett. 222, 88–94 (1994).

    Article  Google Scholar 

  17. Dolgonos, G. A. & Peslherbe, G. H. Encapsulation of diatomic molecules in fullerene C60: implications for their main properties. Phys. Chem. Chem. Phys. 16, 26294–26305 (2014).

    CAS  Article  Google Scholar 

  18. Cioslowski, J. Endohedral chemistry: electronic structures of molecules trapped inside the C60 cage. J. Am. Chem. Soc. 113, 4139–4141 (1991).

    CAS  Article  Google Scholar 

  19. Shameema, O., Ramachandran, C. N. & Sathyamurthy, N. Blue shift in X–H stretching frequency of molecules due to confinement. J. Phys. Chem. A 110, 2–4 (2006).

    CAS  Article  Google Scholar 

  20. Galano, A., Pérez-González, A., del Olmo, L., Francisco-Marquez, M. & León-Carmona, J. R. On the chemical behavior of C60 hosting H2O and other isoelectronic neutral molecules. J Mol. Mod. 20, 2412 (2014).

    Article  Google Scholar 

  21. Cioslowski, J. & Nanayakkara, A. Endohedral fullerites: a new class of ferroelectric materials. Phys. Rev. Lett. 69, 2871–2873 (1992).

    CAS  Article  Google Scholar 

  22. Krachmalnicoff, A. et al. Synthesis and characterisation of an open-cage fullerene encapsulating hydrogen fluoride. Chem. Commun. 51, 4993–4996 (2015).

    CAS  Article  Google Scholar 

  23. Xu, L. et al. Release of the water molecule encapsulated inside an open-cage fullerene through hydrogen bonding mediated by hydrogen fluoride. Chem. Eur. J. 21, 13539–13543 (2015).

    CAS  Article  Google Scholar 

  24. Appel, M., Blaurock, S. & Berger, S. A. Wittig reaction with 2-furyl substituents at the phosphorus atom: improved (Z) selectivity and isolation of a stable oxaphosphetane intermediate. Eur. J. Org. Chem. 1143–1148 (2002).

  25. Olmstead, M. M., Jiang, F. & Balch, A. L. 2C60·3CS2: orientational ordering accompanies the reversible phase transition at 168 K. Chem. Commun. 483–484 (2000).

  26. Aoyagi, S. et al. A cubic dipole lattice of water molecules trapped inside carbon cages. Chem. Commun. 50, 524–526 (2014).

    CAS  Article  Google Scholar 

  27. Xie, Q., Pérez-Cordero, E. & Echegoyen, L. Electrochemical detection of C606– and C706–: enhanced stability of fullerides in solution. J. Am. Chem. Soc. 114, 3978–3980 (1992).

    CAS  Article  Google Scholar 

  28. Muenter, J. S. Hyperfine structure constants of HF and DF. J. Chem. Phys. 52, 6033–6037 (1970).

    Article  Google Scholar 

  29. Martin, J. S. & Fujiwara, F. Y. High resolution nuclear magnetic resonance spectra of hydrogen fluoride in solution and in bihalide ions. Nuclear spin coupling in strong hydrogen bonds. J. Am. Chem. Soc. 96, 7632–7637 (1974).

    CAS  Article  Google Scholar 

  30. Morinaka, Y., Tanabe, F., Murata, M., Murata, Y. & Komatsu, K. Rational synthesis, enrichment, and 13C NMR spectra of endohedral C60 and C70 encapsulating a helium atom. Chem. Commun. 46, 4532–4534 (2010).

    CAS  Article  Google Scholar 

  31. Ge, M. et al. Interaction potential and infrared absorption of endohedral H2 in C60 . J. Chem. Phys. 134, 054507 (2011).

    Article  Google Scholar 

  32. Ge, M. et al. Infrared spectroscopy of endohedral HD and D2 in C60 . J. Chem. Phys. 135, 114511 (2011).

    Article  Google Scholar 

  33. Cohen-Tannoudji, C., Diu, B. & Laloe, F. Quantum Mechanics Vol. 1 (Wiley VCH, 1977).

    Google Scholar 

  34. Flügge, S. Practical Quantum Mechanics (Springer, 1998).

    Google Scholar 

  35. Horsewill, A. J. et al. Quantum rotation and translation of hydrogen molecules encapsulated inside C60: temperature dependence of inelastic neutron scattering spectra. Phil. Trans. R. Soc. A 371, 20110627 (2013).

    CAS  Article  Google Scholar 

  36. Goh, K. K. S. et al. Symmetry-breaking in the endofullerene H2O@C60 revealed in the quantum dynamics of ortho and para-water: a neutron scattering investigation. Phys. Chem. Chem. Phys. 16, 21330–21339 (2014).

    CAS  Article  Google Scholar 

  37. Chang, Y. P., Filsinger, F., Sartakov, B. G. & Küpper, J. CMISTARK: Python package for the Stark-effect calculation and symmetry classification of linear, symmetric and asymmetric top wavefunctions in dc electric fields. Comput. Phys. Commun. 185, 339–349 (2014).

    CAS  Article  Google Scholar 

  38. Jennings, D. A. et al. High-resolution spectroscopy of HF from 40 to 1100 cm−1: highly accurate rotational constants. J. Mol. Spectrosc. 122, 477–480 (1987).

    CAS  Article  Google Scholar 

  39. Delaney, P. & Greer, J. C. C60 as a Faraday cage. Appl. Phys. Lett. 84, 431–433 (2004).

    CAS  Article  Google Scholar 

  40. Cioslowski, J. & Fleischmann, E. D. Endohedral complexes: atoms and ions inside the C60 cage. J. Chem. Phys. 94, 3730–3734 (1991).

    CAS  Article  Google Scholar 

  41. Ensing, B. Costanzo, F. & Silvestrelli, P. L. On the polarity of buckminsterfullerene with a water molecule inside. J. Phys. Chem. A 116, 12184–12188 (2012).

    CAS  Article  Google Scholar 

  42. Märkl, G., Amrhein, J., Stoiber, T., Striebl, U. & Kreitmeier, P. 5,16-Dialkyl(diaryl)-5,16-dihydro-5,16-diphospha-tetraepoxy[22]annulene(2.1.2.1). Tetrahedron 13, 2551–2567 (2002).

    Article  Google Scholar 

  43. Frisch, M. J. et al. Gaussian 09, Rev D.01 (Gaussian, Inc., 2009).

    Google Scholar 

  44. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS  Article  Google Scholar 

  45. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    CAS  Article  Google Scholar 

  46. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623 (1994).

    CAS  Article  Google Scholar 

  47. Hehre, W. J., Radom, L., Schleyer, P. v. R. & Pople, J. A. Ab Initio Molecular Orbital Theory (John Wiley & Sons, 1986).

    Google Scholar 

  48. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS  Article  Google Scholar 

  49. Boys, S. F. & Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553–556 (1970).

    CAS  Article  Google Scholar 

  50. Cheeseman, J. R., Trucks, G. W., Keith, T. A. & Frisch, M. J. A comparison of models for calculating nuclear magnetic resonance shielding tensors. J. Chem. Phys. 104, 5497–5509 (1996).

    CAS  Article  Google Scholar 

  51. Le Duff, Y. & Holzer, W. Raman scattering of HF in the gas state and in liquid solution. J. Chem. Phys. 60, 2175–2178 (1974).

    CAS  Article  Google Scholar 

  52. Kuipers, G. A., Smith, D. F. & Nielsen, A. H. Infrared spectrum of hydrogen fluoride. J. Chem. Phys. 25, 275–279 (1956).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Engineering and Physics Science Research Council (EP/1029451, M001962, M001970) including core capability (EP/K039466), and the European Regional Development Fund Interreg-IVB, MEET project. M.Ca. thanks the Royal Society for a University Research Fellowship. We are grateful to the UK 850 MHz solid-state NMR Facility at Warwick. The research in Tallinn was sponsored by the Estonian Ministry of Education and Research grant IUT23-3 and the European Regional Development Fund project TK134.

Author information

Authors and Affiliations

Authors

Contributions

The project was conceived by R.J.W. with the research and analysis coordinated by R.J.W., M.H.L., A.J.H., M.Ca. and T.R. The manuscript was written by R.J.W., A.K., M.H.L., A.J.H., S.M., R.B., T.R. and M.Co. R.J.W. conceived and A.K. and S.A. carried out the synthesis and basic characterization (solution NMR, electrochemistry, ultraviolet and mass spectroscopy and HPLC). The solid-state NMR was coordinated by M.Ca. and carried out by R.B. with assistance from M.Co. for the analysis. T.R. coordinated and A.S. and U.N. carried out the infrared measurements. A.J.H. coordinated and A.J.H., S.M., M.R.J. and S.R. carried out the INS experiments. S.M., T.R. and A.J.H. analysed the INS and infrared measurements, with modelling of the quantum dynamics of the confined HF carried out by S.M., A.J.H., T.R. and M.H.L. B.M. coordinated and B.M., K.K. and S.A. carried out the dielectric constant measurements. The crystal structure was acquired and solved by M.L.

Corresponding author

Correspondence to Richard J. Whitby.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3287 kb)

Supplementary information

Crystallographic data for compound HFatC60. (CIF 1135 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krachmalnicoff, A., Bounds, R., Mamone, S. et al. The dipolar endofullerene HF@C60. Nature Chem 8, 953–957 (2016). https://doi.org/10.1038/nchem.2563

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2563

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing