Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Installing hydrolytic activity into a completely de novo protein framework

Abstract

The design of enzyme-like catalysts tests our understanding of sequence-to-structure/function relationships in proteins. Here we install hydrolytic activity predictably into a completely de novo and thermostable α-helical barrel, which comprises seven helices arranged around an accessible channel. We show that the lumen of the barrel accepts 21 mutations to functional polar residues. The resulting variant, which has cysteine–histidine–glutamic acid triads on each helix, hydrolyses p-nitrophenyl acetate with catalytic efficiencies that match the most-efficient redesigned hydrolases based on natural protein scaffolds. This is the first report of a functional catalytic triad engineered into a de novo protein framework. The flexibility of our system also allows the facile incorporation of unnatural side chains to improve activity and probe the catalytic mechanism. Such a predictable and robust construction of truly de novo biocatalysts holds promise for applications in chemical and biochemical synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Solution-phase biophysical characterization of the designed peptides.
Figure 2: X-ray crystal structures of CC-Hept mutants.
Figure 3: Mechanistic and kinetic analysis of the reaction of the designed peptides with pNPA.
Figure 4: Characterization and hydrolytic evaluation of CC-Hept–hCys–His–Glu and CC-Hept–βMCys–His–Glu.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Schmid, A. et al. Industrial biocatalysis today and tomorrow. Nature 409, 258–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Nanda, V. & Koder, R. L. Designing artificial enzymes by intuition and computation. Nature Chem. 2, 15–24 (2010).

    Article  CAS  Google Scholar 

  3. Hilvert, D. Design of protein catalysts. Annu. Rev. Biochem. 82, 447–470 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Woolfson, D. N. et al. De novo protein design: how do we expand into the universe of possible protein structures? Curr. Opin. Struct. Biol. 33, 16–26 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Kiss, G., Çelebi-Ölçüm, N., Moretti, R., Baker, D. & Houk, K. Computational enzyme design. Angew. Chem. Int. Ed. 52, 5700–5725 (2013).

    Article  CAS  Google Scholar 

  6. Baker, D. An exciting but challenging road ahead for computational enzyme design. Protein Sci. 19, 1817–1819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Richter, F., Leaver-Fay, A., Khare, S. D., Bjelic, S. & Baker, D. De novo enzyme design using Rosetta3. PLoS ONE 6, e19230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rajagopalan, S. et al. Design of activated serine-containing catalytic triads with atomic-level accuracy. Nature Chem. Biol. 10, 386–391 (2014).

    Article  CAS  Google Scholar 

  9. Rothlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008).

    Article  PubMed  CAS  Google Scholar 

  10. Jiang, L. et al. De novo computational design of retro-aldol enzymes. Science 319, 1387–1391 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Siegel, J. B. et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels–Alder reaction. Science 329, 309–313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Turner, N. J. Directed evolution drives the next generation of biocatalysts. Nature Chem. Biol. 5, 567–573 (2009).

    Article  CAS  Google Scholar 

  13. Blomberg, R. et al. Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature 503, 418–421 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Kries, H., Blomberg, R. & Hilvert, D. De novo enzymes by computational design. Curr. Opin. Chem. Biol. 17, 221–228 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Giger, L. et al. Evolution of a designed retro-aldolase leads to complete active site remodeling. Nature Chem. Biol. 9, 494–498 (2013).

    Article  CAS  Google Scholar 

  16. Preiswerk, N. et al. Impact of scaffold rigidity on the design and evolution of an artificial Diels–Alderase. Proc. Natl Acad. Sci. USA 111, 8013–8018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bolon, D. N. & Mayo, S. L. Enzyme-like proteins by computational design. Proc. Natl Acad. Sci. USA 98, 14274–14279 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moroz, Y. S. et al. New tricks for old proteins: single mutations in a nonenzymatic protein give rise to various enzymatic activities. J. Am. Chem. Soc. 137, 14905–14911 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Richter, F. et al. Computational design of catalytic dyads and oxyanion holes for ester hydrolysis. J. Am. Chem. Soc. 134, 16197–16206 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kaplan, J. & DeGrado, W. F. De novo design of catalytic proteins. Proc. Natl Acad. Sci. USA 101, 11566–11570 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zastrow, M. L. & Pecoraro, V. L. Designing functional metalloproteins: from structural to catalytic metal sites. Coord. Chem. Rev. 257, 2565–2588 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Armstrong, C. T., Watkins, D. W. & Anderson, J. L. R. Constructing man-made enzymes for oxygen activation. J. Chem. Soc. Dalton Trans. 42, 3136–3150 (2013).

    Article  CAS  Google Scholar 

  23. Broo, K. S., Brive, L., Ahlberg, P. & Baltzer, L. Catalysis of hydrolysis and transesterification reactions of p-nitrophenyl esters by a designed helix−loop−helix dimer. J. Am. Chem. Soc. 119, 11362–11372 (1997).

    Article  CAS  Google Scholar 

  24. Nilsson, J. & Baltzer, L. Reactive-site design in folded-polypeptide catalysts—the leaving group pKa of reactive esters sets the stage for cooperativity in nucleophilic and general-acid catalysis. Chem. Eur. J. 6, 2214–2220 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Rufo, C. M. et al. Short peptides self-assemble to produce catalytic amyloids. Nature Chem. 6, 303–309 (2014).

    Article  CAS  Google Scholar 

  26. Zastrow, M. L., Peacock, A. F. A., Stuckey, J. A. & Pecoraro, V. L. Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nature Chem. 4, 118–123 (2012).

    Article  CAS  Google Scholar 

  27. Der, B. S., Edwards, D. R. & Kuhlman, B. Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering. Biochemistry 51, 3933–3940 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Song, W. J. & Tezcan, F. A. A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346, 1525–1528 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Wei, Y. & Hecht, M. H. Enzyme-like proteins from an unselected library of designed amino acid sequences. Prot. Eng. Des. Sel. 17, 67–75 (2004).

    Article  CAS  Google Scholar 

  30. Woolfson, D. N. The design of coiled-coil structures and assemblies. Adv. Protein Chem. 70, 79–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Lupas, A. Coiled coils: new structures and new functions. Trends Biochem. Sci. 21, 375–382 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Calladine, C. R., Sharff, A. & Luisi, B. How to untwist an α-helix: structural principles of an α-helical barrel. J. Mol. Biol. 305, 603–618 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Woolfson, D. N., Bartlett, G. J., Bruning, M. & Thomson, A. R. New currency for old rope: from coiled-coil assemblies to α-helical barrels. Curr. Opin. Struct. Biol. 22, 432–441 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Zaccai, N. R. et al. A de novo peptide hexamer with a mutable channel. Nature Chem. Biol. 7, 935–941 (2011).

    Article  CAS  Google Scholar 

  35. Thomson, A. R. et al. Computational design of water-soluble α-helical barrels. Science 346, 485–488 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Burton, A. J. et al. Accessibility, reactivity, and selectivity of side chains within a channel of de novo peptide assembly. J. Am. Chem. Soc. 135, 12524–12527 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Smith, A. J. T. et al. Structural reorganization and preorganization in enzyme active sites: comparisons of experimental and theoretically ideal active site geometries in the multistep serine esterase reaction cycle. J. Am. Chem. Soc. 130, 15361–15373 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wood, C. W. et al. CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies. Bioinformatics 30, 3029–3035 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fletcher, J. M. et al. A basis set of de novo coiled-coil peptide oligomers for rational protein design and synthetic biology. ACS Synth. Biol. 1, 240–250 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Huang, P.-S. et al. High thermodynamic stability of parametrically designed helical bundles. Science 346, 481–485 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pellegrini-Calace, M., Maiwald, T. & Thornton, J. M. PoreWalker: a novel tool for the identification and characterization of channels in transmembrane proteins from their three-dimensional structure. PLoS Comput. Biol. 5, e1000440 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Bender, M. L., Kezdy, F. J. & Wedler, F. C. α-Chymotrypsin enzyme concentration and kinetics. J. Chem. Educ. 44, 84–87 (1967).

    Article  CAS  PubMed  Google Scholar 

  43. Kezdy, F. J. & Bender, M. L. The kinetics of the α-chymotrypsin-catalyzed hydrolysis of p-nitrophenyl acetate. Biochemistry 1, 1097–1106 (1962).

    Article  CAS  PubMed  Google Scholar 

  44. Faller, L. & Sturtevant, J. M. The kinetics of the α-chymotrypsin-catalyzed hydrolysis of p-nitrophenyl acetate in organic solvent–water mixtures. J. Biol. Chem. 241, 4825–4834 (1966).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.J.B. thanks the Bristol Chemical Synthesis Centre for Doctoral Training funded by the Engineering and Physical Sciences Research Council (EP/G036764/1) and the University of Bristol for the provision of a PhD studentship. A.J.B., A.R.T., W.M.D. and D.N.W. are supported by the European Research Council (340764). D.N.W. holds a Royal Society Wolfson Research Merit Award. We thank the Diamond Light Source for access to beamlines I03, I04 and I24 (award MX-8922), and F. Thomas and members of the Woolfson group for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.J.B., A.R.T. and D.N.W. designed the research. A.J.B. synthesized the peptides and the βMCys amino acid and performed the solution-phase biophysical analyses. A.J.B. and W.M.D. performed the kinetic experiments. A.J.B. and R.L.B. solved the X-ray crystal structures. A.J.B. and D.N.W. wrote the manuscript. All the authors analysed the data, and reviewed and contributed to the manuscript.

Corresponding author

Correspondence to Derek N. Woolfson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 10149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burton, A., Thomson, A., Dawson, W. et al. Installing hydrolytic activity into a completely de novo protein framework. Nature Chem 8, 837–844 (2016). https://doi.org/10.1038/nchem.2555

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2555

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing