Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Force-induced tautomerization in a single molecule

Abstract

Heat transfer, electrical potential and light energy are common ways to activate chemical reactions. Applied force is another way, but dedicated studies for such a mechanical activation are limited, and this activation is poorly understood at the single-molecule level. Here, we report force-induced tautomerization in a single porphycene molecule on a Cu(110) surface at 5 K, which is studied by scanning probe microscopy and density functional theory calculations. Force spectroscopy quantifies the force needed to trigger tautomerization with submolecular spatial resolution. The calculations show how the reaction pathway and barrier of tautomerization are modified in the presence of a copper tip and reveal the atomistic origin of the process. Moreover, we demonstrate that a chemically inert tip whose apex is terminated by a xenon atom cannot induce the reaction because of a weak interaction with porphycene and a strong relaxation of xenon on the tip as contact to the molecule is formed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Porphycene molecule on Cu(110) and schematic of the measurement configuration.
Figure 2: Force spectroscopy of a single porphycene molecule.
Figure 3: Force spectroscopy of a single porphycene molecule with a Xe-terminated tip.
Figure 4: Calculated force curves and MEPs for the tip–porphycene–surface system.

Similar content being viewed by others

References

  1. Beyer, M. K. & Clausen-Schaumann, H. Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev. 105, 2921–2948 (2005).

    Article  CAS  Google Scholar 

  2. Gillespie, P. G. & Walker, R. G. Molecular basis of mechanosensory transduction. Nature 413, 194–202 (2001).

    Article  CAS  Google Scholar 

  3. Davis, D. A. et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459, 68–72 (2009).

    Article  CAS  Google Scholar 

  4. Astumian, R. D. & Bier, M. Mechanochemical coupling of the motion of molecular motors to ATP hydrolysis. Biophys. J. 70, 637–653 (1996).

    Article  CAS  Google Scholar 

  5. Bustamante, C., Chemla, Y. R., Forde, N. R. & Izhaky, D. Mechanical processes in biochemistry. Annu. Rev. Biochem. 73, 705–748 (2004).

    Article  CAS  Google Scholar 

  6. Puchner, E. M. & Gaub, H. E. Single-molecule mechanoenzymatics. Annu. Rev. Biophys. 41, 497–518 (2012).

    Article  CAS  Google Scholar 

  7. Nguyen, T. Q. & Kausch, H. H. Effects of solvent viscosity on polystyrene degradation in transient elongational flow. Macromolecules 23, 5137–5145 (1990).

    Article  CAS  Google Scholar 

  8. Sohma, J. Mechanochemistry of polymers. Prog. Polym. Sci. 14, 451–596 (1989).

    Article  CAS  Google Scholar 

  9. Nguyen, K. L., Friščič, T., Day, G. M., Gladden, L. F. & Jones, W. Terahertz time-domain spectroscopy and the quantitative monitoring of mechanochemical cocrystal formation. Nature Mater. 6, 206–209 (2007).

    Article  CAS  Google Scholar 

  10. Halasz, I. et al. Real-time in situ powder X-ray diffraction monitoring of mechanochemical synthesis of pharmaceutical cocrystals. Angew. Chem. Int. Ed. 52, 11538–11541 (2013).

    Article  CAS  Google Scholar 

  11. Loppacher, Ch. et al. Direct determination of the energy required to operate a single molecule switch. Phys. Rev. Lett. 90, 066107 (2003).

    Article  Google Scholar 

  12. Ternes, M., Lutz, C. P., Hirjibehedin, C. F., Giessibl, F. J. & Heinrich, A. J. The force needed to move an atom on a surface. Science 319, 1066–1069 (2008).

    Article  CAS  Google Scholar 

  13. Sweetman, A. et al. Toggling bistable atoms via mechanical switching of bond angle. Phys. Rev. Lett. 106, 136101 (2011).

    Article  Google Scholar 

  14. Langewisch, G., Falter, J., Fuchs, H. & Schirmeisen, A. Forces during the controlled displacement of organic molecules. Phys. Rev. Lett. 110, 036101 (2013).

    Article  CAS  Google Scholar 

  15. Yamazaki, S. et al. Interplay between switching driven by the tunneling current and atomic force of a bistable four-atom Si quantum dot. Nano Lett. 15, 4356–4363 (2015).

    Article  CAS  Google Scholar 

  16. Kawai, S. et al. Quantifying the atomic-level mechanics of single long physisorbed molecular chains. Proc. Natl Acad. Sci. USA 111, 3968–3972 (2014).

    Article  CAS  Google Scholar 

  17. Bombis, Ch. et al. Mechanical behavior of nanocrystalline NaCl islands on Cu(111). Phys. Rev. Lett. 104, 185502 (2010).

    Article  Google Scholar 

  18. Ohshima, A., Momotake, A. & Arai, T. Photochromism, thermochromism, and solvatochromism of naphthalene-based analogues of salicylideneaniline in solution. J. Photochem. Photobiol. A 162, 473–479 (2004).

    Article  CAS  Google Scholar 

  19. Tapia, O., Andres, J. & Safont, V. S. Theoretical study of transition structures for intramolecular hydrogen transfer in molecular models representing D-ribulose 1,5-bisphosphate. A possible molecular mechanism for the enolization step in Rubisco. J. Phys. Chem. 98, 4821–4830 (1994).

    Article  CAS  Google Scholar 

  20. Heath, J. R. & Ratner, M. A. Molecular electronics. Phys. Today 56, 43–49 (May 2003).

    Article  CAS  Google Scholar 

  21. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    Article  CAS  Google Scholar 

  22. Auwärter, W. et al. A surface-anchored molecular four-level conductance switch based on single proton transfer. Nature Nanotech. 7, 41–46 (2012).

    Article  Google Scholar 

  23. Kumagai, T. et al. Thermally and vibrationally induced tautomerization of single porphycene molecules on a Cu(110) surface. Phys. Rev. Lett. 111, 246101 (2013).

    Article  Google Scholar 

  24. Kumagai, T. et al. Controlling intramolecular hydrogen transfer in a porphycene molecule with single atoms or molecules located nearby. Nature Chem. 6, 41–46 (2014).

    Article  CAS  Google Scholar 

  25. Ladenthin, J. N. et al. Hot carrier-induced tautomerization within a single porphycene molecule on Cu(111). ACS Nano 9, 7287–7295 (2015).

    Article  CAS  Google Scholar 

  26. Kumagai, T. Direct observation and control of hydrogen-bond dynamics using low-temperature scanning tunneling microscopy. Prog. Surf. Sci. 90, 239–291 (2015).

    Article  CAS  Google Scholar 

  27. Vogel, E., Köcher, M., Schmickler, H. & Lex, J. Porphycene—a novel porphin isomer. Angew. Chem. Int. Ed. Engl. 25, 257–259 (1986).

    Article  Google Scholar 

  28. Gawinkowski, S. et al. Vibrations and hydrogen bonding in porphycene. Phys. Chem. Chem. Phys. 14, 5489–5503 (2012).

    Article  CAS  Google Scholar 

  29. Fita, P., Urbańska, N., Radzewicz, C. & Waluk, J. Ground- and excited-state tautomerization rates in porphycenes. Chem. Eur. J. 15, 4851–4856 (2009).

    Article  CAS  Google Scholar 

  30. Giessibl, F. J. Atomic resolution on Si(111)-(7×7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl. Phys. Lett. 76, 1470–1472 (2000).

    Article  CAS  Google Scholar 

  31. Lantz, M. A. et al. Quantitative measurement of short-range chemical bonding forces. Science 291, 2580–2583 (2001).

    Article  CAS  Google Scholar 

  32. Ternes, M. et al. Interplay of conductance, force, and structural change in metallic point contacts. Phys. Rev. Lett. 106, 016802 (2011).

    Article  Google Scholar 

  33. Sader, J. E. & Jarvis, S. P. Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84, 1801–1803 (2004).

    Article  CAS  Google Scholar 

  34. Mohn, F., Gross, L. & Meyer, G. Measuring the short-range force field above a single molecule with atomic resolution. Appl. Phys. Lett. 99, 053106 (2011).

    Article  Google Scholar 

  35. Sugimoto, Y. et al. Role of tip chemical reactivity on atom manipulation process in dynamic force microscopy. ACS Nano 7, 7370–7376 (2013).

    Article  CAS  Google Scholar 

  36. Eigler, D. M., Lutz, C. P. & Rudge, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 352, 600–603 (1991).

    Article  CAS  Google Scholar 

  37. Falter, J. et al. Calibration of quartz tuning fork spring constants for non-contact atomic force microscopy direct mechanical measurements and simulations. Beilstein J. Nanotechnol. 5, 507–516 (2014).

    Article  Google Scholar 

  38. Kozlowski, P. M., Zgierski, M. Z. & Baker, J. The inner-hydrogen migration and ground-state structure of porphycene. J. Chem. Phys. 109, 5905–5913 (1998).

    Article  CAS  Google Scholar 

  39. Ciąćka, P. et al. Tautomerism in porphycenes: analysis of rate-affecting factors. J. Phys. Chem. B 119, 2292–2301 (2015).

    Article  Google Scholar 

  40. Kumagai, T. et al. Direct observation of hydrogen-bond exchange within a single water dimer. Phys. Rev. Lett. 100, 166101 (2008).

    Article  CAS  Google Scholar 

  41. Meng, X. et al. Direct visualization of concerted proton tunnelling in a water nanocluster. Nature Phys. 11, 235–239 (2015).

    Article  CAS  Google Scholar 

  42. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  CAS  Google Scholar 

  43. Mohn, F., Schuler, B., Gross, L. & Meyer, G. Different tips for high-resolution atomic force microscopy and scanning tunneling microscopy of single molecules. Appl. Phys. Lett. 102, 073109 (2013).

    Article  Google Scholar 

  44. Majzik, Z. et al. Simultaneous current, force and dissipation measurements on the Si(111) 7 × 7 surface with an optimized qPlus AFM/STM technique. Beilstein J. Nanotechnol. 3, 249–259 (2012).

    Article  Google Scholar 

  45. Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Article  CAS  Google Scholar 

  46. Román-Pérez, G. & Soler, J. M. Efficient implementation of a van der Waals density functional: application to double-wall carbon nanotubes. Phys. Rev. Lett. 103, 096102 (2009).

    Article  Google Scholar 

  47. Klimeš, J., Bowler, D. R. & Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys. Condens. Matter 22, 022201 (2010).

    Article  Google Scholar 

  48. Mills, G., Jónsson, H. & Schenter, G. K. Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 324, 305–337 (1995).

    Article  CAS  Google Scholar 

  49. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.N.L. and T.K. thank L. Grill, M. Wolf, A. Sweetman, O. Custance and A. Tkatchenko for discussions. T.K. acknowledges the support of the Morino Foundation for Molecular Science. T.F. acknowledges the support of the Basque Deptamento de Educación and the UPV/EHU (IT-756-13), the Spanish Ministerio de Economía y Competitividad (MAT2013-46593-C6-2-P) and the EU Integrated Project PAMS (610446). M.P. acknowledges computer time allocated on ARCHER through the Materials Chemistry Consortium funded by EPSRC grant no. EP/L000202, on Polaris through N8 HPC funded by EPSRC grant no. EP/K000225/1 and on Chadwick at the University of Liverpool. S.G. and J.W. acknowledge support from the Polish National Science Centre (grant no. DEC-2011/02/A/ST5/00043).

Author information

Authors and Affiliations

Authors

Contributions

T.K. conceived the experiments. J.N.L. and T.K. performed the measurements and analysed data. T.F., M.P. and J.C.S. performed all the DFT calculations. S.G. and J.W. provided porphycene molecules. T.K. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Takashi Kumagai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2677 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladenthin, J., Frederiksen, T., Persson, M. et al. Force-induced tautomerization in a single molecule. Nature Chem 8, 935–940 (2016). https://doi.org/10.1038/nchem.2552

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2552

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing