Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Switchable photooxygenation catalysts that sense higher-order amyloid structures

Abstract

Proteins can misfold into amyloid structures that are associated with diseases; however, the same proteins often have important biological roles. To degrade selectively the amyloid form without affecting the fraction of functional protein is, therefore, an attractive goal. Here we report target-state-dependent photooxygenation catalysts that are active only when bound to the cross-β-sheet structure that is characteristic of pathogenic aggregated amyloid proteins. We show these catalysts can selectively oxygenate the amyloid form of amyloid β-protein (Aβ) 1–42 in the presence of non-amyloid off-target substrates. Furthermore, photooxygenation with a catalyst that bears an Aβ-binding peptide attenuated the Aβ pathogenicity in the presence of cells. We also show that selective photooxygenation is generally applicable to other amyloidogenic proteins (amylin, insulin, β2-microglobulin, transthyretin and α-synuclein) and does not affect the physiologically functional non-aggregate states of these proteins. This is the first report of an artificial catalyst that can be selectively and reversibly turned on and off depending on the structure and aggregation state of the substrate protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TaSCAc approach.
Figure 2: Molecular design of cross-β-sheet-sensing photooxygenation catalysts 2 and 3.
Figure 3: Oxygenation of Aβ1–42 using a cross-β-sheet-sensing photocatalyst.
Figure 4: The rotational mobility of the axial bond between the donor and acceptor moieties of 2 as the on–off switch of the oxygenation activity.
Figure 5: Aggregation potency and cytotoxicity of oxygenated Aβ1–42.
Figure 6: Selective oxygenation of pathogenic species.

Similar content being viewed by others

References

  1. Takaoka, Y., Ojida, A. & Hamachi, I. Protein organic chemistry and applications for labeling and engineering in live-cell systems. Angew. Chem. Int. Ed. 52, 4088–4106 (2013).

    Article  CAS  Google Scholar 

  2. Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nature Commun. 5, 4740 (2014).

    Article  CAS  Google Scholar 

  3. Chen, Z. et al. Catalytic protein modification with dirhodium metallopeptides: specificity in designed and natural systems. J. Am. Chem. Soc. 134, 10138–10145 (2012).

    Article  CAS  Google Scholar 

  4. Sato, S. & Nakamura, H. Ligand-directed selective protein modification based on local single-electron-transfer catalysis. Angew. Chem. Int. Ed. 52, 8681–8684 (2013).

    Article  CAS  Google Scholar 

  5. Yamaguchi, T. et al. Turn-ON fluorescent affinity labeling using a small bifunctional O-nitrobenzoxadiazole unit. Chem. Sci. 5, 1021–1029 (2014).

    Article  CAS  Google Scholar 

  6. Lee, T. Y. & Suh, J. Target-selective peptide-cleaving catalysts as a new paradigm in drug design. Chem. Soc. Rev. 38, 1949–1957 (2009).

    Article  CAS  Google Scholar 

  7. Prakash, J. & Kodanko, J. J. Metal-based methods for protein inactivation. Curr. Opin. Chem. Biol. 17, 197–203 (2013).

    Article  CAS  Google Scholar 

  8. Taniguchi, A. et al. Attenuation of the aggregation and neurotoxicity of amyloid-β peptides by catalytic photooxygenation. Angew. Chem. Int. Ed. 53, 1382–1385 (2014).

    Article  CAS  Google Scholar 

  9. Klein, W. L., Krafft, G. A. & Finch, C. E. Targeting small Aβ oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci. 24, 219–224 (2001).

    Article  CAS  Google Scholar 

  10. Selkoe, D. J. Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behav. Brain Res. 192, 106–113 (2008).

    Article  CAS  Google Scholar 

  11. Benilova, I., Karran, E. & De Strooper, B. The toxic Aβ oligomer and Alzheimer's disease: an emperor in need of clothes. Nature Neurosci. 15, 349–357 (2012).

    Article  CAS  Google Scholar 

  12. Chiti, F. C. & Dobson, M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    Article  CAS  Google Scholar 

  13. Uversky, V. N. et al. Methionine oxidation inhibits fibrillation of human α-synuclein in vitro. FEBS Lett. 517, 239–244 (2002).

    Article  CAS  Google Scholar 

  14. Butterfield, D. A. & Boyd-Kimball, D. The critical role of methionine 35 in Alzheimer's amyloid β-peptide (1-42)-induced oxidative stress and neurotoxicity. Biochim. Biophys. Acta Proteins Proteomics 1703, 149–156 (2004).

    Article  Google Scholar 

  15. Breydo, L. et al. Methionine oxidation interferes with conversion of the prion protein into the fibrillar proteinase K-resistant conformation. Biochemistry 44, 15534–15543 (2005).

    Article  CAS  Google Scholar 

  16. Maleknia, S. D., Reixach, N. & Buxbaum, J. N. Oxidation inhibits amyloid fibril formation of transthyretin. FEBS J. 273, 5400–5406 (2006).

    Article  CAS  Google Scholar 

  17. Binger, K. J., Griffin, M. D. & Howlett, G. J. Methionine oxidation inhibits assembly and promotes disassembly of apolipoprotein C-II amyloid fibrils. Biochemistry 47, 10208–10217 (2008).

    Article  CAS  Google Scholar 

  18. Chimon, S. et al. Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer's β-amyloid. Nature Struct. Mol. Biol. 14, 1157–1164 (2007).

    Article  CAS  Google Scholar 

  19. Stroud, J. C., Liu, C., Teng, P. K. & Eisenberg, D. Toxic fibrillar oligomers of amyloid-β have cross-β structure. Proc. Natl Acad. Sci. USA 109, 7717–7722 (2012).

    Article  CAS  Google Scholar 

  20. Walsh, D. M. et al. Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J. Biol. Chem. 274, 25945–25952 (1999).

    Article  CAS  Google Scholar 

  21. Jan, A. et al. Aβ42 neurotoxicity is mediated by ongoing nucleated polymerization process rather than by discrete Aβ42 species. J. Biol. Chem. 286, 8585–8596 (2011).

    Article  CAS  Google Scholar 

  22. Qiang, W., Yau, W. M., Luo, Y. Q., Mattson, M. P. & Tycko, R. Antiparallel β-sheet architecture in Iowa-mutant β-amyloid fibrils. Proc. Natl Acad. Sci. USA 109, 4443–4448 (2012).

    Article  CAS  Google Scholar 

  23. Amdursky, N., Erez, Y. & Huppert, D. Molecular rotors: what lies behind the high sensitivity of the thioflavin-T fluorescent marker. Acc. Chem. Res. 45, 1548–1557 (2012).

    Article  CAS  Google Scholar 

  24. McClure, D. S. Triplet-singlet transitions in organic molecules. Lifetime measurements of the triplet state. J. Chem. Phys. 17, 905–913 (1949).

    Article  CAS  Google Scholar 

  25. Buell, A. K., Dobson, C. M. & Welland, M. E. Measuring the kinetics of amyloid fibril elongation using quartz crystal microbalances. Methods Mol. Biol. 849, 101–119 (2012).

    Article  CAS  Google Scholar 

  26. Balducci, C. et al. Synthetic amyloid-β oligomers impair long-term memory independently of cellular prion protein. Proc. Natl Acad. Sci. USA 107, 2295–2300 (2010).

    Article  CAS  Google Scholar 

  27. Stsiapura, V. I. et al. Thioflavin T as a molecular rotor: fluorescent properties of thioflavin T in solvents with different viscosity. J. Phys. Chem. B 112, 15893–15902 (2008).

    Article  CAS  Google Scholar 

  28. Haag, W. R., Hoigne, J., Gassman, E. & Braun, A. M. Singlet oxygen in surface waters. Part I: Furfuryl alcohol as a trapping agent. Chemosphere 13, 631–640 (1984).

    Article  CAS  Google Scholar 

  29. Mishra, R., Sjölander, D. & Hammarström, P. Spectroscopic characterization of diverse amyloid fibrils in vitro by the fluorescent dye Nile red. Mol. BioSyst. 7, 1232–1240 (2011).

    Article  CAS  Google Scholar 

  30. Greene, L. A. & Tischler, A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl Acad. Sci. USA 73, 2424–2428 (1976).

    Article  CAS  Google Scholar 

  31. Lorenzo, A., Razzaboni, B., Weir, G. C. & Yankner, B. A. Pancreatic islet cell toxicity of amylin associated with type-2 diabetes mellitus. Nature 368, 756–760 (1994).

    Article  CAS  Google Scholar 

  32. Mauro, M. et al. Kinetics of different processes in human insulin amyloid formation. J. Mol. Biol. 366, 258–274 (2007).

    Article  Google Scholar 

  33. Hua, Q. X. & Weiss, M. A. Mechanism of insulin fibrillation: the structure of insulin under amyloidogenic conditions resembles a protein-folding intermediate. J. Biol. Chem. 279, 21449–21460 (2004).

    Article  CAS  Google Scholar 

  34. Sasahara, K. et al. Amyloid nucleation triggered by agitation of β2-microglobulin under acidic and neutral pH conditions. Biochemistry 47, 2650–2660 (2008).

    Article  CAS  Google Scholar 

  35. Wiseman, R. L., Powers, E. T. & Kelly, J. W. Partitioning conformational intermediates between competing refolding and aggregation pathways: insights into transthyretin amyloid disease. Biochemistry 44, 16612–16623 (2005).

    Article  CAS  Google Scholar 

  36. Uversky, V. N., Li, J. & Fink, A. L. Metal-triggered structural transformations, aggregation, and fibrillation of human α-synuclein. A possible molecular link between Parkinson's disease and heavy metal exposure. J. Biol. Chem. 276, 44284–44296 (2001).

    Article  CAS  Google Scholar 

  37. Cheng, B. et al. Inhibiting toxic aggregation of amyloidogenic proteins: a therapeutic strategy for protein misfolding diseases. Biochim. Biophys. Acta 1830, 4860–4871 (2013).

    Article  CAS  Google Scholar 

  38. Gestwicki, J. E., Crabtree, G. R. & Graef, I. A. Harnessing chaperones to generate small-molecule inhibitors of amyloid β aggregation. Science 306, 865–869 (2004).

    Article  CAS  Google Scholar 

  39. Triesscheijn, M., Baas, P., Schellens, J. H. M. & Stewart, F. A. Photodynamic therapy in oncology. Oncologist 11, 1034–1044 (2006).

    Article  CAS  Google Scholar 

  40. Kim, T.-I. et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    Article  CAS  Google Scholar 

  41. Kalia, S. K., Sankar, T. & Lozano, A. M. Deep brain stimulation for Parkinson's disease and other movement disorders. Cur. Opin. Neurol. 26, 374–380 (2013).

    Article  Google Scholar 

  42. Wua, N., Raoa, X., Gao, Y., Wang, J. & Xu, F. Amyloid-β deposition and olfactory dysfunction in an Alzheimer's disease model. J. Alzheimer's Dis. 37, 699–712 (2013).

    Article  Google Scholar 

  43. Peelaerts, W. et al. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522, 340–344 (2015).

    Article  CAS  Google Scholar 

  44. Colon, W. & Kelly, J. W. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31, 8654–8660 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by ERATO from JST. We thank T. Katada and K. Kontani, I. Shimada and M. Kato (The University of Tokyo) for access to the ultracentrifuge, CD spectroscopy and AFM, respectively. We are grateful to Y. Goto and T. Ikenoue (Osaka University) for providing advice on the aggregation experiments of α-synuclein. We are grateful to T. Tomita, Y. Hori, K. Hanaoka and T. Komatsu (The University of Tokyo) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.T., Y.So. and M.K. conceived and designed the research. A.T. performed all the experiments and Y.Sh. synthesized catalyst 3. A.T., K.O., Y.So. and M.K. analysed the data. A.T., Y.So. and M.K. co-wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Youhei Sohma or Motomu Kanai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5743 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taniguchi, A., Shimizu, Y., Oisaki, K. et al. Switchable photooxygenation catalysts that sense higher-order amyloid structures. Nature Chem 8, 974–982 (2016). https://doi.org/10.1038/nchem.2550

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2550

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing