Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamic molecular crystals with switchable physical properties

Abstract

The development of molecular materials whose physical properties can be controlled by external stimuli — such as light, electric field, temperature, and pressure — has recently attracted much attention owing to their potential applications in molecular devices. There are a number of ways to alter the physical properties of crystalline materials. These include the modulation of the spin and redox states of the crystal's components, or the incorporation within the crystalline lattice of tunable molecules that exhibit stimuli-induced changes in their molecular structure. A switching behaviour can also be induced by changing the molecular orientation of the crystal's components, even in cases where the overall molecular structure is not affected. Controlling intermolecular interactions within a molecular material is also an effective tool to modulate its physical properties. This Review discusses recent advances in the development of such stimuli-responsive, switchable crystalline compounds — referred to here as dynamic molecular crystals — and suggests how different approaches can serve to prepare functional materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic molecular crystals wherein physical properties are switched by external stimuli such as light, electric field, temperature and pressure.
Figure 2: Examples of systems in which the physical properties of molecular crystalline materials are altered by manipulating spin, electron transfer, proton transfer, molecular structure and orientation.
Figure 3: Control of physical properties through the induction of spin transition.
Figure 4: Control of physical properties through the induction of charge transfer.
Figure 5: Control of physical properties through the induction of charge-transfer-coupled spin transition.
Figure 6: Control of physical properties through the induction of proton transfer.
Figure 7: Control of physical properties through the induction of molecular structural change.
Figure 8: Control of physical properties through the induction of molecular orientation change.

Similar content being viewed by others

References

  1. Halcrow, M. A. (ed.) Spin-Crossover Materials: Properties and Applications (Wiley, 2013).

    Book  Google Scholar 

  2. Bousseksou, A., Molnár, G., Salmon, L. & Nicolazzi, W. Molecular spin crossover phenomenon: recent achievements and prospects. Chem. Soc. Rev. 40, 3313–3335 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Tezgerevska, T., Alley, K. G. & Boskovic, C. Valence tautomerism in metal complexes: Stimulated and reversible intramolecular electron transfer between metal centers and organic ligands. Coord. Chem. Rev. 268, 23–40 (2014).

    Article  CAS  Google Scholar 

  4. Dunbar, K. R., Achim, C. & Shatruk, M. in Spin-Crossover Materials: Properties and Applications (ed. Halcrow, M. A.) 171–202 (Wiley, 2013).

    Book  Google Scholar 

  5. Sato, O., Tao, J. & Zhang, Y. Z. Control of magnetic properties through external stimuli. Angew. Chem. Int. Ed. 46, 2152–2187 (2007).

    Article  CAS  Google Scholar 

  6. Morita, Y., Murata, T. & Nakasuji, K. Cooperation of hydrogen-bond and charge-transfer interactions in molecular complexes in the solid state. Bull. Chem. Soc. Jap. 86, 183–197 (2013).

    Article  CAS  Google Scholar 

  7. Saito, G. & Yoshida, Y. Development of conductive organic molecular assemblies: organic metals, superconductors, and exotic functional materials. Bull. Chem. Soc. Jap. 80, 1–137 (2007).

    Article  CAS  Google Scholar 

  8. Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Coppens, P., Novozhilova, I. & Kovalevsky, A. Photoinduced linkage isomers of transition-metal nitrosyl compounds and related complexes. Chem. Rev. 102, 861–883 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Vogelsberg, C. S. & Garcia-Garibay, M. A. Crystalline molecular machines: function, phase order, dimensionality, and composition. Chem. Soc. Rev. 41, 1892–1910 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Nath, N. K., Panda, M. K., Sahoo, S. C. & Naumov, P. Thermally induced and photoinduced mechanical effects in molecular single crystals—a revival. CrystEngComm 16, 1850–1858 (2014).

    Article  CAS  Google Scholar 

  12. Zhang, W. & Xiong, R. G. Ferroelectric metal–organic frameworks. Chem. Rev. 112, 1163–1195 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Moonen, N. N. P., Flood, A. H., Fernández, J. M. & Stoddart, J. F. in Topics in Current Chemistry Vol. 262, 99–132 (Springer, 2005).

    Google Scholar 

  14. Kahn, O. Molecular Magnetism (VCH, 1993).

  15. Ogawa, Y. et al. Dynamical aspects of the photoinduced phase transition in spin-crossover complexes. Phys. Rev. Lett. 84, 3181–3184 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Gutlich, P., Hauser, A. & Spiering, H. Thermal and optical switching of iron(ii) complexes. Angew. Chem. Int. Ed. Engl. 33, 2024–2054 (1994).

    Article  Google Scholar 

  17. Sorai, M. Calorimetric investigations of phase transitions occurring in molecule-based materials in which electrons are directly involved. Bull. Chem. Soc. Jap. 74, 2223–2253 (2001).

    Article  CAS  Google Scholar 

  18. Kahn, O. & Martinez, C. J. Spin-transition polymers: from molecular materials toward memory devices. Science 279, 44–48 (1998).

    Article  CAS  Google Scholar 

  19. Wang, C. F. et al. Synergetic spin crossover and fluorescence in one-dimensional hybrid complexes. Angew. Chem. Int. Ed. 54, 1574–1577 (2015).

    Article  CAS  Google Scholar 

  20. Bonhommeau, S. et al. Photoswitching of the dielectric constant of the spin-crossover complex [Fe(L)(CN)2]·H2O. Angew. Chem. Int. Ed. 45, 1625–1629 (2006).

    Article  CAS  Google Scholar 

  21. Decurtins, S., Gutlich, P., Kohler, C. P., Spiering, H. & Hauser, A. Light-induced excited spin state trapping in a transition-metal complex: the hexa-1-propyltetrazole-iron(ii) tetrafluoroborate spin-crossover system. Chem. Phys. Lett. 105, 1–4 (1984).

    Article  CAS  Google Scholar 

  22. Hayami, S. et al. First observation of light-induced excited spin state trapping for an iron(III) complex. J. Am. Chem. Soc. 122, 7126–7127 (2000).

    Article  CAS  Google Scholar 

  23. Ohkoshi, S. I., Imoto, K., Tsunobuchi, Y., Takano, S. & Tokoro, H. Light-induced spin-crossover magnet. Nature Chem. 3, 564–569 (2011).

    Article  CAS  Google Scholar 

  24. Linares, J., Codjovi, E. & Garcia, Y. Pressure and temperature spin crossover sensors with optical detection. Sensors 12, 4479–4492 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gütlich, P., Gaspar, A. B., Garcia, Y. & Ksenofontov, V. Pressure effect studies in molecular magnetism. Compt. Rend. Chimie 10, 21–36 (2007).

    Article  CAS  Google Scholar 

  26. Gatteschi, D. & Sessoli, R. Quantum tunneling of magnetization and related phenomena in molecular materials. Angew. Chem. Int. Ed. 42, 268–297 (2003).

    Article  CAS  Google Scholar 

  27. Parois, P. et al. Pressure-induced Jahn–Teller switching in a Mn12 nanomagnet. Chem. Commun. 46, 1881–1883 (2010).

    Article  CAS  Google Scholar 

  28. Morimoto, M., Miyasaka, H., Yamashita, M. & Irie, M. Coordination assemblies of [Mn4] single-molecule magnets linked by photochromic ligands: photochemical control of the magnetic properties. J. Am. Chem. Soc. 131, 9823–9835 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Nihei, M. et al. A light-induced phase exhibiting slow magnetic relaxation in a cyanide-bridged Fe4Co2 complex. Angew. Chem. Int. Ed. 51, 6361–6364 (2012).

    Article  CAS  Google Scholar 

  30. Feng, X. et al. Tristability in a light-actuated single-molecule magnet. J. Am. Chem. Soc. 135, 15880–15884 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Mathonière, C., Lin, H. J., Siretanu, D., Clérac, R. & Smith, J. M. Photoinduced single-molecule magnet properties in a four-coordinate iron(II) spin crossover complex. J. Am. Chem. Soc. 135, 19083–19086 (2013).

    Article  PubMed  CAS  Google Scholar 

  32. Liu, T. et al. A light-induced spin crossover actuated single-chain magnet. Nature Commun. 4, 2826 (2013).

    Article  CAS  Google Scholar 

  33. Shepherd, H. J. Molecular actuators driven by cooperative spin-state switching. Nature Commun. 4, 3607 (2013).

    Article  CAS  Google Scholar 

  34. Dorbes, S., Valade, L., Real, J. A. & Faulmann, C. [Fe(sal2-trien)][Ni(dmit)2]: towards switchable spin crossover molecular conductors. Chem. Commun. 69–70 (2005).

  35. Takahashi, K. et al. Evidence of the chemical uniaxial strain effect on electrical conductivity in the spin-crossover conducting molecular system: [FeIII(qnal)2][Pd(dmit)2]5·acetone. J. Am. Chem. Soc. 130, 6688–6689 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Phan, H., Benjamin, S. M., Steven, E., Brooks, J. S. & Shatruk, M. Photomagnetic response in highly conductive iron(II) spin-crossover complexes with TCNQ radicals. Angew. Chem. Int. Ed. 54, 823–827 (2015).

    Article  CAS  Google Scholar 

  37. Hicks, R. G. A new spin on bistability. Nature Chem. 3, 189–191 (2011).

    Article  CAS  Google Scholar 

  38. Ratera, I. & Veciana, J. Playing with organic radicals as building blocks for functional molecular materials. Chem. Soc. Rev. 41, 303–349 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Fujita, W. & Awaga, K. Room-temperature magnetic bistability in organic radical crystals. Science 286, 261–262 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Vela, S. et al. The key role of vibrational entropy in the phase transitions of dithiazolyl-based bistable magnetic materials. Nature Commun. 5, 4411 (2014).

    Article  CAS  Google Scholar 

  41. Pal, S. K. et al. Hysteretic spin and charge delocalization in a phenalenyl-based molecular conductor. J. Am. Chem. Soc. 132, 17258–17264 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Lekin, K. et al. Hysteretic spin crossover between a bisdithiazolyl radical and its hypervalent σ-dimer. J. Am. Chem. Soc. 132, 16212–16224 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Phan, H., Lekin, K., Winter, S. M., Oakley, R. T. & Shatruk, M. Photoinduced solid state conversion of a radical σ-dimer to a π-radical pair. J. Am. Chem. Soc. 135, 15674–15677 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Lekin, K. et al. Heat, pressure and light-induced interconversion of bisdithiazolyl radicals and dimers. J. Am. Chem. Soc. 136, 8050–8062 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Matsumoto, S., Higashiyama, T., Akutsu, H. & Nakatsuji, S. A functional nitroxide radical displaying unique thermochromism and magnetic phase transition. Angew. Chem. Int. Ed. 50, 10879–10883 (2011).

    Article  CAS  Google Scholar 

  46. Nishimaki, H. & Ishida, T. Organic two-step spin-transition-like behavior in a linear S = 1 array: 3′-methylbiphenyl-3,5-diyl bis(tert-butylnitroxide) and related compounds. J. Am. Chem. Soc. 132, 9598–9599 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Torrance, J. B., Vazquez, J. E., Mayerle, J. J. & Lee, V. Y. Discovery of a neutral-to-ionic phase transition in organic materials. Phys. Rev. Lett. 46, 253–257 (1981).

    Article  CAS  Google Scholar 

  48. Horiuchi, S., Kumai, R., Okimoto, Y. & Tokura, Y. Chemical approach to neutral–ionic valence instability, quantum phase transition, and relaxor ferroelectricity in organic charge-transfer complexes. Chem. Phys. 325, 78–91 (2006).

    Article  CAS  Google Scholar 

  49. Lemée-Cailleau, M. H. et al. Thermodynamics of the neutral-to-ionic transition as condensation and crystallization of charge-transfer excitations. Phys. Rev. Lett. 79, 1690–1693 (1997).

    Article  Google Scholar 

  50. Torrance, J. B. et al. Anomalous nature of neutral-to-ionic phase transition in tetrathiafulvalene-chloranil. Phys. Rev. Lett. 47, 1747–1750 (1981).

    Article  CAS  Google Scholar 

  51. Kobayashi, K. et al. Electronic ferroelectricity in a molecular crystal with large polarization directing antiparallel to ionic displacement. Phys. Rev. Lett. 108, 237601 (2012).

    Article  PubMed  CAS  Google Scholar 

  52. Horiuchi, S., Kobayashi, K., Kumai, R. & Ishibashi, S. Ionic versus electronic ferroelectricity in donor-acceptor molecular sequences. Chem. Lett. 43, 26–35 (2014).

    Article  CAS  Google Scholar 

  53. Miyamoto, T., Yada, H., Yamakawa, H. & Okamoto, H. Ultrafast modulation of polarization amplitude by terahertz fields in electronic-type organic ferroelectrics. Nature Commun. 4, 2586 (2013).

    Article  CAS  Google Scholar 

  54. Ishihara, S. Electronic ferroelectricity in molecular organic crystals. J. Phys. Cond. Matter 26, 493201 (2014).

    Article  CAS  Google Scholar 

  55. Monceau, P., Nad, F. Y. & Brazovskii, S. Ferroelectric Mott-Hubbard phase of organic (TMTTF)2X conductors. Phys. Rev. Lett. 86, 4080–4083 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Yamamoto, K. et al. Strong optical nonlinearity and its ultrafast response associated with electron ferroelectricity in an organic conductor. J. Phys. Soc. Jap. 77, 074709 (2008).

    Article  CAS  Google Scholar 

  57. Chorazy, S. et al. Charge transfer phase transition with reversed thermal hysteresis loop in the mixed-valence Fe9[W(CN)8]6·xMeOH cluster. Chem. Commun. 50, 3484–3487 (2014).

    Article  CAS  Google Scholar 

  58. Itoi, M. et al. Charge-transfer phase transition and ferromagnetism of iron mixed-valence complexes (n-CnH2n+1)4N[FeIIFeIII(dto)3] (n = 3–6; dto = C2O2S2). Eur. J. Inorg. Chem. 1198–1207 (2006).

    Article  CAS  Google Scholar 

  59. Kojima, N., Itoi, M., Ono, Y., Okubo, M. & Enomoto, M. Spin-entropy driven charge-transfer phase transition in iron mixed-valence system. Mater. Sci. Poland 21, 181–189 (2003).

    CAS  Google Scholar 

  60. Herrera, J. M. et al. Reversible photoinduced magnetic properties in the heptanuclear complex [MoIV(CN)2(CN-CuL)6]8+: a photomagnetic high-spin molecule. Angew. Chem. Int. Ed. 43, 5468–5471 (2004).

    Article  CAS  Google Scholar 

  61. Bleuzen, A., Marvaud, V., Mathoniere, C., Sieklucka, B. & Verdaguer, M. Photomagnetism in clusters and extended molecule-based magnets. Inorg. Chem. 48, 3453–3466 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Ohkoshi, S. I. & Tokoro, H. Photomagnetism in cyano-bridged bimetal assemblies. Acc. Chem. Res. 45, 1749–1758 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Pierpont, C. G. Studies on charge distribution and valence tautomerism in transition metal complexes of catecholate and semiquinonate ligands. Coord. Chem. Rev. 216–217, 99–125 (2001).

    Article  Google Scholar 

  64. Fedushkin, I. L. et al. Genuine redox isomerism in a rare-earth-metal complex. Angew. Chem. Int. Ed. 51, 10584–10587 (2012).

    Article  CAS  Google Scholar 

  65. Sato, O. Optically switchable molecular solids: photoinduced spin-crossover, photochromism, and photoinduced magnetization. Acc. Chem. Res. 36, 692–700 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Avendano, C. et al. Temperature and light induced bistability in a Co3[Os(CN)6]2 6H2O prussian blue analog. J. Am. Chem. Soc. 132, 13123–13125 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Sato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. Photoinduced magnetization of a cobalt iron cyanide. Science 272, 704–705 (1996).

    Article  CAS  PubMed  Google Scholar 

  68. Verdaguer, M. Molecular electronics emerges from molecular magnetism. Science 272, 698–699 (1996).

    Article  CAS  Google Scholar 

  69. Bleuzen, A. et al. Photoinduced ferrimagnetic systems in Prussian blue analogues CIxCo4[Fe(CN)6]y (CI = alkali cation). 1. Conditions to observe the phenomenon. J. Am. Chem. Soc. 122, 6648–6652 (2000).

    Article  CAS  Google Scholar 

  70. Liu, T., Zhang, Y. J., Kanegawa, S. & Sato, O. Photoinduced metal-to-metal charge transfer toward single-chain magnet. J. Am. Chem. Soc. 132, 8250–8251 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Dong, D. P. et al. Photoswitchable dynamic magnetic relaxation in a well-isolated {Fe2Co} double-zigzag chain. Angew. Chem. Int. Ed. 51, 5119–5123 (2012).

    Article  CAS  Google Scholar 

  72. Hoshino, N. et al. Three-way switching in a cyanide-bridged CoFe chain. Nature Chem. 4, 921–926 (2012).

    Article  CAS  Google Scholar 

  73. Koumousi, E. S. et al. Metal-to-metal electron transfer in Co/Fe Prussian blue molecular analogues: the ultimate miniaturization. J. Am. Chem. Soc. 136, 15461–15464 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Liu, T. et al. Reversible electron transfer in a linear {Fe2Co} trinuclear complex induced by thermal treatment and photoirraditaion. Angew. Chem. Int. Ed. 51, 4367–4370 (2012).

    Article  CAS  Google Scholar 

  75. Nihei, M. et al. Controlled intramolecular electron transfers in cyanide-bridged molecular squares by chemical modifications and external stimuli. J. Am. Chem. Soc. 133, 3592–3600 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, Y. Z. et al. Thermochromic and photoresponsive cyanometalate Fe/Co squares: toward control of the electron transfer temperature. J. Am. Chem. Soc. 136, 16854–16864 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Berlinguette, C. P. et al. A charge-transfer-induced spin transition in the discrete cyanide-bridged complex {[Co(tmphen)2]3[Fe(CN)6]2}. J. Am. Chem. Soc. 126, 6222–6223 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Li, D. F. et al. Magnetic and optical bistability driven by thermally and photoinduced intramolecular electron transfer in a molecular cobalt-iron Prussian blue analogue. J. Am. Chem. Soc. 130, 252–258 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Hilfiger, M. G. et al. An unprecedented charge transfer induced spin transition in an Fe–Os cluster. Angew. Chem. Int. Ed. 49, 1410–1413 (2010).

    Article  CAS  Google Scholar 

  80. Podgajny, R. et al. Co-NC-W and Fe-NC-W electron-transfer channels for thermal bistability in trimetallic {Fe6Co3[W(CN)8]6} cyanido-bridged cluster. Angew. Chem. Int. Ed. 52, 896–900 (2013).

    Article  CAS  Google Scholar 

  81. Dei, A., Gatteschi, D., Sangregorio, C. & Sorace, L. Quinonoid metal complexes: toward molecular switches. Acc. Chem. Res. 37, 827–835 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Sato, O., Cui, A. L., Matsuda, R., Tao, J. & Hayami, S. Photo-induced valence tautomerism in Co complexes. Acc. Chem. Res. 40, 361–369 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Tao, J., Maruyama, H. & Sato, O. Valence tautomeric transitions with thermal hysteresis around room temperature and photoinduced effects observed in a cobalt–tetraoxolene complex. J. Am. Chem. Soc. 128, 1790–1791 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. Poneti, G. et al. Soft-X-ray-induced redox isomerism in a cobalt dioxolene complex. Angew. Chem. Int. Ed. 49, 1954–1957 (2010).

    Article  CAS  Google Scholar 

  85. Jung, O. S. & Pierpont, C. G. Photomechanical polymers. Synthesis and characterization of a polymeric pyrazine-bridged cobalt semiquinonate–catecholate complex. J. Am. Chem. Soc. 116, 2229–2230 (1994).

    Article  CAS  Google Scholar 

  86. Abakumov, G. A. & Nevodchikov, V. I. Thermomechanical and photomechanical effects observed on crystals of a free-radical complex. Doklady Akademii Nauk Sssr 266, 1407–1410 (1982).

    CAS  Google Scholar 

  87. Reetz, M. T., Höger, S. & Harms, K. Proton-transfer-dependent reversible phase changes in the 4,4′-bipyridinium salt of squaric acid. Angew. Chem. Int. Ed. Engl. 33, 181–183 (1994).

    Article  Google Scholar 

  88. Martins, D. M. S. et al. Temperature- and pressure-induced proton transfer in the 1:1 adduct formed between squaric acid and 4,4-bipyridine. J. Am. Chem. Soc. 131, 3884–3893 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Sheth, A. R., Lubach, J. W., Munson, E. J., Muller, F. X. & Grant, D. J. W. Mechanochromism of piroxicam accompanied by intermolecular proton transfer probed by spectroscopic methods and solid-phase changes. J. Am. Chem. Soc. 127, 6641–6651 (2005).

    Article  CAS  PubMed  Google Scholar 

  90. Horiuchi, S. & Tokura, Y. Organic ferroelectrics. Nature Mater. 7, 357–366 (2008).

    Article  CAS  Google Scholar 

  91. Horiuchi, S., Kumai, R. & Tokura, Y. A supramolecular ferroelectric realized by collective proton transfer. Angew. Chem. Int. Ed. 46, 3497–3501 (2007).

    Article  CAS  Google Scholar 

  92. Szafrański, M., Katrusiak, A. & McIntyre, G. J. Ferroelectric order of parallel bistable hydrogen bonds. Phys. Rev. Lett. 89, 2155071–2155074 (2002).

    Article  CAS  Google Scholar 

  93. Horiuchi, S. et al. Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 463, 789–792 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Horiuchi, S. et al. Above-room-temperature ferroelectricity and antiferroelectricity in benzimidazoles. Nature Commun. 3, 1308 (2012).

    Article  CAS  Google Scholar 

  95. Horiuchi, S., Kumai, R., Tokunaga, Y. & Tokura, Y. Proton dynamics and room-temperature ferroelectricity in anilate salts with a proton sponge. J. Am. Chem. Soc. 130, 13382–13391 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Weinberg, D. R. et al. Proton-coupled electron transfer. Chem. Rev. 112, 4016–4093 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Nakasuji, K. et al. Exploration of new cooperative proton-electron transfer (PET) systems. First example of extended conjugated quinhydrones: 1,5-dihalo-2,6-naphthoquinhydrones. J. Am. Chem. Soc. 113, 1862–1864 (1991).

    Article  CAS  Google Scholar 

  98. Felderhoff, M., Steller, I., Reyes-Arellano, A., Boese, R. & Sustmann, R. Cooperative proton-electron transfer in a supramolecular structure of meso-1,2-bis-(4-dimethylaminophenyl)-1,2-ethanediol and bis(4-cyanobenzylidene)ethylenediamine. Adv. Mater. 8, 402–405 (1996).

    Article  CAS  Google Scholar 

  99. Isono, T. et al. Hydrogen bond-promoted metallic state in a purely organic single-component conductor under pressure. Nature Commun. 4, 1344 (2013).

    Article  CAS  Google Scholar 

  100. Ueda, A. et al. Hydrogen-bond-dynamics-based switching of conductivity and magnetism: A phase transition caused by deuterium and electron transfer in a hydrogen-bonded purely organic conductor crystal. J. Am. Chem. Soc. 136, 12184–12192 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Tomotsune, S. & Sekiya, T. Effect of pressure on photochromic furylfulgide. Eur. Phys. J. B 86, 218 (2013).

    Article  CAS  Google Scholar 

  102. Iwasa, Y. et al. New phases of C60 synthesized at high pressure. Science 264, 1570–1572 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, M. S., Xu, G., Zhang, Z. J. & Guo, G. C. Inorganic–organic hybrid photochromic materials. Chem. Commun. 46, 361–376 (2010).

    Article  CAS  Google Scholar 

  104. Irie, M. Diarylethenes for memories and switches. Chem. Rev. 100, 1685–1716 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Kobatake, S., Takami, S., Muto, H., Ishikawa, T. & Irie, M. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446, 778–781 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Al-Kaysi, R. O. & Bardeen, C. J. Reversible photoinduced shape changes of crystalline organic nanorods. Adv. Mater. 19, 1276–1280 (2007).

    Article  CAS  Google Scholar 

  107. Koshima, H., Ojima, N. & Uchimoto, H. Mechanical motion of azobenzene crystals upon photoirradiation. J. Am. Chem. Soc. 131, 6890–6891 (2009).

    Article  CAS  PubMed  Google Scholar 

  108. Zhu, L., Al-Kaysi, R. O. & Bardeen, C. J. Reversible photoinduced twisting of molecular crystal microribbons. J. Am. Chem. Soc. 133, 12569–12575 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Kitagawa, D., Nishi, H. & Kobatake, S. Photoinduced twisting of a photochromic diarylethene crystal. Angew. Chem. Int. Ed. 52, 9320–9322 (2013).

    Article  CAS  Google Scholar 

  110. McClure, B. A. & Rack, J. J. Isomerization in photochromic ruthenium sulfoxide complexes. Eur. J. Inorg. Chem. 3895–3904 (2010).

  111. Schaniel, D. & Woike, T. Necessary conditions for the photogeneration of nitrosyl linkage isomers. Phys. Chem. Chem. Phys. 11, 4391–4395 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Nakai, H. et al. Direct observation of photochromic dynamics in the crystalline state of an organorhodium dithionite complex. Angew. Chem. Int. Ed. 45, 6473–6476 (2006).

    Article  CAS  Google Scholar 

  113. Nakai, H. et al. Photochromism of an organorhodium dithionite complex in the crystalline-state: Molecular motion of pentamethylcyclopentadienyl ligands coupled to atom rearrangement in a dithionite ligand. J. Am. Chem. Soc. 130, 17836–17845 (2008).

    Article  CAS  PubMed  Google Scholar 

  114. Gu, Z. Z., Sato, O., Iyoda, T., Hashimoto, K. & Fujishima, A. Spin switching effect in nickel nitroprusside: design of a molecular spin device based on spin exchange interaction. Chem. Mater. 9, 1092–1097 (1997).

    Article  CAS  Google Scholar 

  115. Horie, M. et al. Thermally-induced phase transition of pseudorotaxane crystals: changes in conformation and interaction of the molecules and optical properties of the crystals. J. Am. Chem. Soc. 134, 17932–17944 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Ye, H. Y., Zhang, Y., Fu, D. W. & Xiong, R. G. A displacive-type metal crown ether ferroelectric compound: Ca(NO3)2(15-crown-5). Angew. Chem. Int. Ed. 53, 6724–6728 (2014).

    Article  CAS  Google Scholar 

  117. Juhász, G. et al. Bistability of magnetization without spin-transition in a high-spin cobalt(II) complex due to angular momentum quenching. J. Am. Chem. Soc. 131, 4560–4561 (2009).

    Article  PubMed  CAS  Google Scholar 

  118. De Panthou, F. L. et al. A new type of thermally induced spin transition associated with an equatorial ↔ axial conversion in a copper(II)–nitroxide cluster. J. Am. Chem. Soc. 117, 11247–11253 (1995).

    Article  Google Scholar 

  119. Hirel, C. et al. New spin-transition-like copper(II)-nitroxide species. Inorg. Chem. 46, 7545–7552 (2007).

    Article  CAS  PubMed  Google Scholar 

  120. Fedin, M. et al. Light-induced excited spin state trapping in an exchange-coupled nitroxide-copper(II)-nitroxide cluster. Angew. Chem. Int. Ed. 47, 6897–6899 (2008).

    Article  CAS  Google Scholar 

  121. Barskaya, I. Y. et al. Photoswitching of a thermally unswitchable molecular magnet Cu(hfac)2Li−Pr evidenced by steady-state and time-resolved electron paramagnetic resonance. J. Am. Chem. Soc. 136, 10132–10138 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Tayi, A. S., Kaeser, A., Matsumoto, M., Aida, T. & Stupp, S. I. Supramolecular ferroelectrics. Nature Chem. 7, 281–294 (2015).

    Article  CAS  Google Scholar 

  123. Yannoni, C. S., Johnson, R. D., Meijer, G., Bethune, D. S. & Salem, J. R. 13C NMR study of the C60 cluster in the solid state: molecular motion and carbon chemical shift anisotropy. J. Phys. Chem. 95, 9–10 (1991).

    Article  CAS  Google Scholar 

  124. Pekker, S. et al. Rotor–stator molecular crystals of fullerenes with cubane. Nature Mater. 4, 764–767 (2005).

    Article  CAS  Google Scholar 

  125. Das, D., Jacobs, T. & Barbour, L. J. Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material. Nature Mater. 9, 36–39 (2010).

    Article  CAS  Google Scholar 

  126. Yao, Z. S. et al. Molecular motor-driven abrupt anisotropic shape change in a single crystal of a Ni complex. Nature Chem. 6, 1079–1083 (2014).

    Article  CAS  Google Scholar 

  127. Cai, H. L. et al. 4-(cyanomethyl)anilinium perchlorate: a new displacive-type molecular ferroelectric. Phys. Rev. Lett. 107, 147601 (2011).

    Article  PubMed  CAS  Google Scholar 

  128. Fu, D. W. et al. 4-Methoxyanilinium perrhenate 18-Crown-6: a new ferroelectric with order originating in swinglike motion slowing down. Phys. Rev. Lett. 110, 257601 (2013).

    Article  PubMed  CAS  Google Scholar 

  129. Akutagawa, T. et al. Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators. Nature Mater. 8, 342–347 (2009).

    Article  CAS  Google Scholar 

  130. Fu, D. W. et al. Diisopropylammonium bromide is a high-temperature molecular ferroelectric crystal. Science 339, 425–428 (2013).

    Article  CAS  PubMed  Google Scholar 

  131. Tang, Y. et al. Hydrogen-bonded displacive-type ferroelastic phase transition in a new entangled supramolecular compound. Cryst. Growth Des. 15, 457–464 (2015).

    Article  CAS  Google Scholar 

  132. Sun, Z. et al. Ferroelastic phase transition and switchable dielectric behavior associated with ordering of molecular motion in a perovskite-like architectured supramolecular cocrystal. J. Mater. Chem. C 1, 2561–2567 (2013).

    Article  CAS  Google Scholar 

  133. Sorai, M. Entropy diagnosis for phase transitions occurring in functional materials. Pure Appl. Chem. 77, 1331–1343 (2005).

    Article  CAS  Google Scholar 

  134. Larionova, J. et al. Towards the ultimate size limit of the memory effect in spin-crossover solids. Angew. Chem. Int. Ed. 47, 8236–8240 (2008).

    Article  CAS  Google Scholar 

  135. Croce, R. & Van Amerongen, H. Natural strategies for photosynthetic light harvesting. Nature Chem. Biol. 10, 492–501 (2014).

    Article  CAS  Google Scholar 

  136. Coskun, A. et al. High hopes: can molecular electronics realise its potential? Chem. Soc. Rev. 41, 4827–4859 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support from MEXT (Japan); KAKEN (No. 15H01018, 26104528, 25288029) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osamu Sato.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, O. Dynamic molecular crystals with switchable physical properties. Nature Chem 8, 644–656 (2016). https://doi.org/10.1038/nchem.2547

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2547

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing