A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle

Abstract

The conversion of chemical energy to drive directional motion at the molecular level allows biological systems, ranging from subcellular components to whole organisms, to perform a myriad of dynamic functions and respond to changes in the environment. Directional movement has been demonstrated in artificial molecular systems, but the fundamental motif of unidirectional rotary motion along a single-bond rotary axle induced by metal-catalysed transformation of chemical fuels has not been realized, and the challenge is to couple the metal-centred redox processes to stepwise changes in conformation to arrive at a full unidirectional rotary cycle. Here, we present the design of an organopalladium-based motor and the experimental demonstration of a 360° unidirectional rotary cycle using simple chemical fuels. Exploiting fundamental reactivity principles in organometallic chemistry enables control of directional rotation and offers the potential of harnessing the wealth of opportunities offered by transition-metal-based catalytic conversions to drive motion and dynamic functions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Concept and design of a unidirectional rotary molecular motor.
Figure 2: Palladium-mediated 360° unidirectional rotation of biaryl 1.
Figure 3: Unidirectional 180° rotation of (S,M)-1 into (S,P)-1.
Figure 4: Unidirectional 180° rotation of (S,P)-1 into (S,M)-1.
Figure 5: Chemical structures and reaction scheme for an integrated cycle based on switching palladium(II) and palladium(0) redox states for unidirectional 360° rotation of (S,M)-1 into (S,P)-1 into (S,M)-1.

References

  1. 1

    Champin, B., Mobian, P. & Sauvage, J.-P. Transition metal complexes as molecular machine prototypes. Chem. Soc. Rev. 36, 358–366 (2007).

    CAS  Article  Google Scholar 

  2. 2

    Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    CAS  Article  Google Scholar 

  3. 3

    Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2006).

    Article  Google Scholar 

  4. 4

    Browne, W. R. & Feringa, B. L. Making molecular machines work. Nature Nanotech. 1, 25–35 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Balzani, V., Credi, A. & Venturi, M. Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld (Wiley, 2008).

    Google Scholar 

  7. 7

    Koumura, N., Zijlstra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Koumura, N., Geertsema, E. M., van Gelder, M. B., Meetsma, A. & Feringa, B. L. Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic centre with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. J. Am. Chem. Soc. 124, 5037–5051 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Hernández, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    Article  Google Scholar 

  11. 11

    Bissell, R. A., Córdova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electronically switchable molecular shuttle. Nature 369, 133–137 (1994).

    CAS  Article  Google Scholar 

  12. 12

    Ragazzon, G., Baroncini, M., Silvi, S., Venturi, M. & Credi, A. Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. Nature Nanotech. 10, 70–75 (2015).

    CAS  Article  Google Scholar 

  13. 13

    Von Delius, M., Geertsema, E. M. & Leigh, D. A. A synthetic small molecule that can walk down a track. Nature Chem. 2, 96–101 (2010).

    CAS  Article  Google Scholar 

  14. 14

    Beves, J. E. et al. Toward metal complexes that can directionally walk along tracks: controlled stepping of a molecular biped with a palladium(II) foot. J. Am. Chem. Soc. 136, 2094–2100 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Kelly, T. R., De Silva, H. & Silva, R. A. Unidirectional rotary motion in a molecular system. Nature 401, 150–152 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Fletcher, S. P., Dumur, F., Pollard, M. M. & Feringa, B. L. A reversible unidirectional molecular rotary motor driven by chemical energy. Science 310, 80–82 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Bringmann, G. & Hartung, T. First atropenantioselective ring opening of an achiral lactone-bridged biaryl with chiral borane-derived hydride-transfer reagents. Angew. Chem. Int. Ed. Engl. 31, 761–762 (1992).

    Article  Google Scholar 

  18. 18

    Bringmann, G. et al. Atropselective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5384–5427 (2005).

    CAS  Article  Google Scholar 

  19. 19

    Kakiuchi, F., Le Gendre, P., Yamada, A., Ohtaki, H. & Murai, S. Atropselective alkylation of biaryl compounds by means of transition metal-catalyzed C–H/olefin coupling. Tetrahedron Asymmetr. 11, 2647–2651 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Ros, A. et al. Dynamic kinetic cross-coupling strategy for the asymmetric synthesis of axially chiral heterobiaryls. J. Am. Chem. Soc. 135, 15730–15733 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Bhat, V., Wang, S., Stoltz, B. M. & Virgil, S. C. Asymmetric synthesis of QUINAP via dynamic kinetic resolution. J. Am. Chem. Soc. 135, 16829–16832 (2013).

    CAS  Article  Google Scholar 

  22. 22

    Hazra, C. K., Dherbassy, Q., Wencel-Delord, J. & Colobert, F. Synthesis of axially chiral biaryls through sulfoxide-directed asymmetric mild C–H activation and dynamic kinetic resolution. Angew. Chem. Int. Ed. 53, 13871–13875 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Leroux, F. R., Berthelot, A., Bonnafoux, L., Panossian, A. & Colobert, F. Transition-metal-free atropo-selective synthesis of biaryl compounds based on arynes. Chem. Eur. J. 18, 14232–14236 (2012).

    CAS  Article  Google Scholar 

  24. 24

    Trost, B. M. & Rao, M. Development of chiral sulfoxide ligands for asymmetric catalysis. Angew. Chem. Int. Ed. 54, 5026–5043 (2015).

    CAS  Article  Google Scholar 

  25. 25

    Clayden, J., Mitjans, D. & Youssef, L. H. Lithium–sulfoxide–lithium exchange for the asymmetric synthesis of atropisomers under thermodynamic control. J. Am. Chem. Soc. 124, 5266–5267 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Clayden, J., Fletcher, S. P., Rowbottom, S. J. M. & Helliwell, M. Conformational preferences of a polar biaryl: a phase- and enantiomeric purity-dependent molecular hinge. Org. Lett. 11, 2313–2316 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Zalesskiy, S. S. & Ananikov, V. P. Pd2(dba)3 as a precursor of soluble metal complexes and nanoparticles: determination of palladium active species for catalysis and synthesis. Organometallics 31, 2302–2309 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the European Research Council (Advanced Investigator Grant no. 227897 to B.L.F.), The Netherlands Organization for Scientific Research (NWO-CW), funding from the Ministry of Education and Science (Gravitation programme 024.001.035) and The Royal Netherlands Academy of Arts and Sciences (KNAW).

Author information

Affiliations

Authors

Contributions

B.S.L.C. and B.L.F. conceived the project. B.S.L.C. performed the experimental work. J.C.M.K. performed the computational chemistry. E.O. solved the crystal structures. B.S.L.C. and B.L.F. wrote the manuscript. All authors read and commented on the manuscript.

Corresponding author

Correspondence to Ben L. Feringa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5787 kb)

Supplementary information

Crystallographic data for compound (+-)-Pd[(R,M)-3]BrPCy3 (CIF 1871 kb)

Supplementary information

Crystallographic data for compound (S,M)-1 (CIF 843 kb)

Supplementary information

Crystallographic data for compound (S,P)-1 (CIF 1602 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Collins, B., Kistemaker, J., Otten, E. et al. A chemically powered unidirectional rotary molecular motor based on a palladium redox cycle. Nature Chem 8, 860–866 (2016). https://doi.org/10.1038/nchem.2543

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing