Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-organized architectures from assorted DNA-framed nanoparticles

Abstract

The science of self-assembly has undergone a radical shift from asking questions about why individual components self-organize into ordered structures, to manipulating the resultant order. However, the quest for far-reaching nanomanufacturing requires addressing an even more challenging question: how to form nanoparticle (NP) structures with designed architectures without explicitly prescribing particle positions. Here we report an assembly concept in which building instructions are embedded into NPs via DNA frames. The integration of NPs and DNA origami frames enables the fabrication of NPs with designed anisotropic and selective interactions. Using a pre-defined set of different DNA-framed NPs, we show it is possible to design diverse planar architectures, which include periodic structures and shaped meso-objects that spontaneously emerge on mixing of the different topological types of NP. Even objects of non-trivial shapes, such as a nanoscale model of Leonardo da Vinci's Vitruvian Man, can be self-assembled successfully.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of nanoscale modules that incorporate NPs and DNA origami frames into pχNPs.
Figure 2: Nanoclusters and 1D arrays assembled from the pχNPs.
Figure 3: Assembly of 2D square NP arrays.
Figure 4: Designed architecture: nanoscale analogue of Leonardo da Vinci's Vitruvian Man, assembled from multiple types of pχNPs.

Similar content being viewed by others

References

  1. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedral into complex structures. Science 337, 453–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Agarwal, U. & Escobedo, F. A. Mesophase behaviour of polyhedral particles. Nature Mater. 10, 230–235 (2011).

    Article  CAS  Google Scholar 

  3. Whitelam, S., Tamblyn, I., Garrahan, J. P. & Beton, P. H. Emergent rhombus tilings from molecular interactions with M-fold rotational symmetry. Phys. Rev. Lett. 114, 115702 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Jain, A., Errington, J. R. & Truskett, T. M. Inverse design of simple pairwise interactions with low-coordinated 3D lattice ground states. Soft Matter 9, 3866–3870 (2013).

    Article  CAS  Google Scholar 

  5. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Podsiadlo, P., Krylova, G. V., Demortiere, A. & Shevchenko, E. V. Multicomponent periodic nanoparticle superlattices. J. Nanopart. Res. 13, 15–32 (2011).

    Article  CAS  Google Scholar 

  8. Xu, L. et al. Nanoparticle assemblies: dimensional transformation of nanomaterials and scalability. Chem. Soc. Rev. 42, 3114–3126 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Talapin, D. V. et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature 461, 964–967 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Whitelam, S., Schulman, R. & Hedges, L. Self-assembly of multicomponent structures in and out of equilibrium. Phys. Rev. Lett. 109, 265506 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Barish, R. D., Schulman, R., Rothemund, P. W. K. & Winfree, E. An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl Acad. Sci. USA 106, 6054–6059 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Romano, F. & Sciortino, F. Two dimensional assembly of triblock Janus particles into crystal phases in the two bond per patch limit. Soft Matter 7, 5799–5804 (2011).

    Article  CAS  Google Scholar 

  13. Smallenburg, F. & Sciortino, F. Liquids more stable than crystals in particles with limited valence and flexible bonds. Nature Phys. 9, 554–558 (2013).

    Article  CAS  Google Scholar 

  14. Yi, G. R., Pine, D. J. & Sacanna, S. Recent progress on patchy colloids and their self-assembly. J. Phys. Condensed Matter 25, 193101 (2013).

    Article  CAS  Google Scholar 

  15. van Ravensteijn, B. G. P., Kamp, M., van Blaaderen, A. & Kegel, W. K. General route toward chemically anisotropic colloids. Chem. Mater. 25, 4348–4353 (2013).

    Article  CAS  Google Scholar 

  16. Wang, Y. F. et al. Colloids with valence and specific directional bonding. Nature 491, 51–61 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Ye, X. et al. Competition of shape and interaction patchiness for self-assembling nanoplates. Nature Chem. 5, 466–473 (2013).

    Article  CAS  Google Scholar 

  18. Klinkova, A., Therien-Aubin, H., Choueiri, R. M., Rubinstein, M. & Kumacheva, E. Colloidal analogs of molecular chain stoppers. Proc. Natl Acad. Sci. USA 110, 18775–18779 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lau, K. L., Hamblin, G. D. & Sleiman, H. F. Gold nanoparticle 3D-DNA building blocks: high purity preparation and use for modular access to nanoparticle assemblies. Small 10, 660–666 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Sun, D. Z. et al. Heterogeneous nanoclusters assembled by PNA-templated double-stranded DNA. Nanoscale 4, 6722–6725 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Jones, M. R. et al. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nature Mater. 9, 913–917 (2010).

    Article  CAS  Google Scholar 

  22. Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal Kagome lattice. Nature 469, 381–384 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Knorowski, C. & Travesset, A. Self-assembly and crystallization of hairy (f-star) and DNA-grafted nanocubes. J. Am. Chem. Soc. 136, 653–659 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Liu, W. et al. Diamond family of nanoparticle superlattices. Science 351, 582–586 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tian, Y., Wang, T., Zhang, Y., Li, H. & Gang, O. Lattice engineering via nanoparticle-DNA frameworks. Nature Mater. 15, 654–661 (2016).

    Article  CAS  Google Scholar 

  26. Halverson, J. D. & Tkachenko, A. V. DNA-programmed mesoscopic architecture. Phys Rev. E 87, 062310 (2013).

    Article  CAS  Google Scholar 

  27. Tkachenko, A. V. Theory of programmable hierarchic self-assembly. Phys. Rev. Lett. 106, 255501 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Murugan, A., Zou, J. & Brenner, M. P. Undesired usage and the robust self-assembly of heterogeneous structures. Nature Commun. 6, 6203 (2015).

    Article  CAS  Google Scholar 

  29. Jacobs, W. M., Reinhardt, A. & Frenkel, D. Rational design of self-assembly pathways for complex multicomponent structures. Proc. Natl Acad. Sci. USA 112, 6313–6318 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murugan, A., Zeravcic, Z., Brenner, M. P. & Leibler, S. Multifarious assembly mixtures: systems allowing retrieval of diverse stored structures. Proc. Natl Acad. Sci. USA 112, 54–59, (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Ruzicka, B. et al. Observation of empty liquids and equilibrium gels in a colloidal clay. Nature Mater. 10, 56–60 (2011).

    Article  CAS  Google Scholar 

  32. Feng, L., Dreyfus, R., Sha, R. J., Seeman, N. C. & Chaikin, P. M. DNA patchy particles. Adv. Mater. 25, 2779–2783 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Kraft, D. J. et al. Patchy polymer colloids with tunable anisotropy dimensions. J. Phys. Chem. B 115, 7175–7181 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Romano, F., Sanz, E. & Sciortino, F. Crystallization of tetrahedral patchy particles in silico. J. Chem. Phys. 134, 174502 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Hamblin, G. D., Rahbani, J. F. & Sleiman, H. F. Sequential growth of long DNA strands with user-defined patterns for nanostructures and scaffolds. Nature Commun. 6, 7065 (2015).

    Article  CAS  Google Scholar 

  36. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    CAS  PubMed  Google Scholar 

  37. Maye, M. M., Nykypanchuk, D., Cuisinier, M., van der Lelie, D. & Gang, O. Stepwise surface encoding for high-throughput assembly of nanoclusters. Nature Mater. 8, 388–391 (2009).

    Article  CAS  Google Scholar 

  38. Kim, J. W., Kim, J. H. & Deaton, R. DNA-linked nanoparticle building blocks for programmable matter. Angew. Chem. Int. Ed. 50, 9185–9190 (2011).

    Article  CAS  Google Scholar 

  39. Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  40. Yan, H., Park, S. H., Finkelstein, G., Reif, J. H. & LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. He, Y., Chen, Y., Liu, H., Ribbe, A. E. & Mao, C. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 127, 12202–12203 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Liu, W., Zhong, H., Wang, R. & Seeman, N. C. Crystalline two-dimensional DNA-origami arrays. Angew. Chem. Int. Ed. 50, 264–267 (2011).

    Article  CAS  Google Scholar 

  43. Liu, Y., Ke, Y. & Yan, H. Self-assembly of symmetric finite-size DNA nanoarrays. J. Am. Chem. Soc. 127, 17140–17141 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Zheng, J. et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461, 74–77 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Woo, S. & Rothemund, P. W. K. Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion. Nature Commun. 5, 4889 (2014).

    Article  CAS  Google Scholar 

  47. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, 1953).

  49. Zhang, Y. G., Lu, F., Yager, K. G., van der Lelie, D. & Gang, O. A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nature Nanotech. 8, 865–872 (2013).

    Article  CAS  Google Scholar 

  50. Zhang, C. et al. A general approach to DNA-programmable atom equivalents. Nature Mater. 12, 741–746 (2013).

    Article  CAS  Google Scholar 

  51. Seeman, N. C. De novo design of sequences for nucleic acid structural engineering. J. Biomol. Struct. Dyn. 8, 573–581 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research carried out at the Center for Functional Nanomaterials, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Contributions

W.L. and O.G. conceived and designed the experiments. W.L. performed the experiments. W.L., Y.T. and O.G. analysed the data. J.H. and A.V.T. contributed to the theoretical/numerical analysis. W.L. and O.G. wrote the paper. O.G. supervised the projects. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Oleg Gang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Halverson, J., Tian, Y. et al. Self-organized architectures from assorted DNA-framed nanoparticles. Nature Chem 8, 867–873 (2016). https://doi.org/10.1038/nchem.2540

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2540

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing