Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes

This article has been updated


Asymmetric lipid giant vesicles have been used to model the biochemical reactions in cell membranes. However, methods for producing asymmetric giant vesicles lead to the inclusion of an organic solvent layer that affects the mechanical and physical characteristics of the membrane. Here we describe the formation of asymmetric giant vesicles that include little organic solvent, and use them to investigate the dynamic responses of lipid molecules in the vesicle membrane. We formed the giant vesicles via the inhomogeneous break-up of a lipid microtube generated by applying a jet flow to an asymmetric planar lipid bilayer. The asymmetric giant vesicles showed a lipid flip-flop behaviour in the membrane, superficially similar to the lipid flip-flop activity observed in apoptotic cells. In vitro synthesis of membrane proteins into the asymmetric giant vesicles revealed that the lipid asymmetry in bilayer membranes improves the reconstitution ratio of membrane proteins. Our asymmetric giant vesicles will be useful in elucidating lipid–lipid and lipid–membrane protein interactions involved in the regulation of cellular functions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic representation of asymmetric GV formation from a planar lipid bilayer using pulsed microfluidic jet flow.
Figure 2: Formation of GVs via inhomogeneous break-up of a lipid microtube by a jet flow.
Figure 3: Characterization of GV membranes.
Figure 4: Formation and flip-flop measurement of DOPS asymmetric GVs.
Figure 5: Membrane dynamics of asymmetric GVs with the outer leaflet composed of pure DOPC and the inner leaflet composed of DOPS/DOPE/DOPC in the presence of cinnamycin.
Figure 6: Reconstituted amount and function of membrane proteins into asymmetric GVs.

Change history

  • 22 June 2016

    In the version of this Article originally published, in Fig. 1 some of the lipid heads in the bottom right panel were mistakenly coloured grey and in Fig. 5b the red arrow labelling ‘flop’ in the right panel was out of place. These errors have been corrected in all versions of the Article.


  1. 1

    Bacia, K., Schwille, P. & Kurzchalia, T. Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc. Natl Acad. Sci. USA 102, 3272–3277 (2005).

    CAS  PubMed  Google Scholar 

  2. 2

    Kaneda, M. et al. Direct formation of proteo-liposomes by in vitro synthesis and cellular cytosolic delivery with connexin-expressing liposomes. Biomaterials 30, 3971–3977 (2009).

    CAS  PubMed  Google Scholar 

  3. 3

    Kamiya, K., Tsumoto, K., Yoshimura, T. & Akiyoshi, K. Cadherin-integrated liposomes with potential application in a drug delivery system. Biomaterials 32, 9899–9907 (2011).

    CAS  PubMed  Google Scholar 

  4. 4

    Kurihara, K. et al. Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nature Chem. 3, 775–781 (2011).

    CAS  Google Scholar 

  5. 5

    Matosevic, M. Synthesizing artificial cells from giant unilamellar vesicles: state-of-the art in the development of microfluidic technology. Bioessays 34, 992–1001 (2012).

    CAS  Google Scholar 

  6. 6

    Pautot, S., Frisken, B. J. & Weitz, D. A. Engineering asymmetric vesicles. Proc. Natl Acad. Sci. USA 100, 10718–10721 (2003).

    CAS  PubMed  Google Scholar 

  7. 7

    Hu, P. C., Li, S. & Malmstadt, N. Microfluidic fabrication of asymmetric giant lipid vesicles. ACS Appl. Mater. Interfaces 3, 1434–1440 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Funakoshi, K., Suzuki, H. & Takeuchi, S. Formation of giant lipid vesicle like compartments from a planar lipid membrane by a pulsed jet flow. J. Am. Chem. Soc. 129, 12608–12609 (2007).

    CAS  PubMed  Google Scholar 

  9. 9

    Richmond, D. L. et al. Forming giant vesicles with controlled membrane composition, asymmetry, and contents. Proc. Natl Acad. Sci. USA 108, 9431–9436 (2011).

    CAS  PubMed  Google Scholar 

  10. 10

    Arriaga, L. R. et al. Ultrathin shell double emulsion templated giant unilamellar lipid vesicles with controlled microdomain formation. Small 10, 950–956 (2014).

    CAS  PubMed  Google Scholar 

  11. 11

    van Swaay, D. & de Mello, A. Microfluidic methods for forming liposomes. Lab. Chip 13, 752–767 (2013).

    CAS  PubMed  Google Scholar 

  12. 12

    Devaux, P. F., Herrmann, A., Ohlwein, N. & Kozlov, M. M. How lipid flippases can modulate membrane structure. Biochim. Biophys. Acta 1778, 1591–1600 (2008).

    CAS  PubMed  Google Scholar 

  13. 13

    Hanson, P. K. & Nichols, J. W. Energy-dependent flip of fluorescence-labeled phospholipids is regulated by nutrient starvation and transcription factors, PDR1 and PDR3. J. Biol. Chem. 276, 9861–9867 (2001).

    CAS  PubMed  Google Scholar 

  14. 14

    Uchida, K., Emoto, K., Daleke, D. L., Inoue, K. & Umeda, M. Induction of apoptosis by phosphatidylserine. J. Biochem. 123, 1073–1078 (1998).

    CAS  PubMed  Google Scholar 

  15. 15

    Funakoshi, K., Suzuki, H. & Takeuchi, S. Lipid bilayer formation by contacting monolayers in a microfluidic device for membrane protein analysis. Anal. Chem. 78, 8169–8174 (2006).

    CAS  PubMed  Google Scholar 

  16. 16

    Kawano, R. et al. Automated parallel recording of topologically identified single ion channels. Sci. Rep. 3, 1995 (2013).

    PubMed  PubMed Central  Google Scholar 

  17. 17

    Hagedorn, J. G., Martys, N. S. & Douglas, J. F. Breakup of a fluid thread in a confined geometry: droplet-plug transition, perturbation sensitivity, and kinetic stabilization with confinement. Phys. Rev. E 69, 056312 (2004).

    Google Scholar 

  18. 18

    Oglęcka, K., Rangmani, P., Liedberg, B., Kraut, R. S. & Parikh, A. N. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials. eLIFE 3, e03695 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. 19

    Bangham, A. D. & Home, R. W. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol. 8, 660–668 (1964).

    CAS  PubMed  Google Scholar 

  20. 20

    Reeves, J. P. & Dowben, R. M. Formation and properties of thin-walled phospholipid vesicles. J. Cell Physiol. 73, 49–60 (1969).

    CAS  PubMed  Google Scholar 

  21. 21

    Tsuji, Y. et al. Droplet split-and-contact method for high-throughput transmembrane electrical recording. Anal. Chem. 85, 10913–10919 (2013).

    CAS  PubMed  Google Scholar 

  22. 22

    Cherney, D. P., Conboy, J. C. & Harris, J. M. Optical-trapping Raman microscopy detection of single unilamellar lipid vesicles. Anal. Chem. 75, 6621–6628 (2003).

    CAS  PubMed  Google Scholar 

  23. 23

    Ota, S., Yoshizawa, S. & Takeuchi, S. Microfluidic formation of monodisperse, cell-sized, and unilamellar vesicles. Angew. Chem. Int. Ed. 48, 6533–6537 (2009).

    CAS  Google Scholar 

  24. 24

    Rodrigues, N., Pincet, F. & Cribier, S. Giant vesicles formed by gentle hydration and electroformation: a comparison by fluorescence microscopy. Colloids Surf. B 42, 125–130 (2005).

    Google Scholar 

  25. 25

    van Engeland, M., Nieland, L. J., Ramaekers, F. C., Schutte, B. & Reutelingsperger, C. P. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31, 1–9 (1998).

    CAS  PubMed  Google Scholar 

  26. 26

    Chan, A., Reiter, R., Wiese, S., Fertig, G. & Gold, R. Plasma membrane phospholipid asymmetry precedes DNA fragmentation in different apoptotic cell models. Histochem. Cell Biol. 110, 553–558 (1998).

    CAS  PubMed  Google Scholar 

  27. 27

    Matsuzaki, K., Murase, O., Fujii, N. & Miyajima, K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 35, 11361–11368 (1996).

    CAS  PubMed  Google Scholar 

  28. 28

    Bai, J. & Pagano, R. E. Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. Biochemistry 36, 8840–8848 (1997).

    CAS  PubMed  Google Scholar 

  29. 29

    Kornberg, R. D. & McConnell, H. M. Inside–outside transitions of phospholipids in vesicle membranes. Biochemistry 10, 1111–1120 (1971).

    CAS  PubMed  Google Scholar 

  30. 30

    Qian, S. Structure and Mechanism of Peptide-induced Membrane Pores (ProQuest, UMI Dissertation Publishing, 2011).

    Google Scholar 

  31. 31

    Makino, A. et al. Cinnamycin (Ro 09-0198) promotes cell binding and toxicity by inducing transbilayer lipid movement. J. Biol. Chem. 278, 3204–3209 (2003).

    CAS  PubMed  Google Scholar 

  32. 32

    Iwamoto, K. et al. Curvature-dependent recognition of ethanolamine phospholipids by duramycin and cinnamycin. Biophys. J. 93, 1608–1619 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Guder, A., Wiedemann, I. & Sahl, H. G. Posttranslationally modified bacteriocins—the lantibiotics. Biopolymers 55, 62–73 (2000).

    CAS  PubMed  Google Scholar 

  34. 34

    Liu, Y. J., Hansen, G. P., Venancio-Marques, A. & Baigl, D. Cell-free preparation of functional and triggerable giant proteoliposomes. ChemBioChem 14, 2243–2247 (2013).

    CAS  PubMed  Google Scholar 

  35. 35

    Kumar, N. M. & Gilula, N. B. The gap junction communication channel. Cell 84, 381–388 (1996).

    CAS  PubMed  Google Scholar 

  36. 36

    John, S. A., Kondo, R., Wang, S. Y., Goldhaber, J. I. & Weiss, J. N. Connexin-43 hemichannels opened by metabolic inhibition. J. Biol. Chem. 274, 236–240 (1999).

    CAS  PubMed  Google Scholar 

  37. 37

    Uhríková, D. et al. Small-angle neutron scattering study of n-decane effect on the bilayer thickness in extruded unilamellar dioleoylphosphatidylcholine liposomes. Biophys. Chem. 88, 165–170 (2000).

    PubMed  Google Scholar 

  38. 38

    Sasanuma, Y. Conformational analysis of chain molecules in liquid crystalline phases by a rotational isomeric state scheme with maximum entropy method I. 1H–1H dipolar couplings from n-alkanes dissolved in a nematic solvent. Polymer J. 32, 883–889 (2000).

    CAS  Google Scholar 

  39. 39

    van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nature Rev. Mol. Cell Biol. 9, 112–124 (2008).

    CAS  Google Scholar 

  40. 40

    von Heijne, G. Control of topology and mode of assembly of a polytopic membrane protein by positively charged residues. Nature 341, 456–458 (1989).

    CAS  PubMed  Google Scholar 

  41. 41

    Hartmann, E., Rapoport, T. A. & Lodish, H. F. Predicting the orientation of eukaryotic membrane-spanning proteins. Proc. Natl Acad. Sci. USA 86, 5786–5790 (1989).

    CAS  PubMed  Google Scholar 

  42. 42

    Dowhan, W. & Bogdanov, M. Lipid-dependent membrane protein topogenesis. Annu. Rev. Biochem. 78, 515–540 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank Y. Hasegawa for advising us on the simulation of the GV-formation process. We also thank M. Uchida and Y. Nozaki for technical support, K. Okumura and M. Takinoue for providing useful discussion, A. Y. Hsiao for useful comments on the manuscript and A. Sato for the artwork for Fig. 1. This work was partly supported by Grant-in-Aid for Research Activity Start-up No. 23850022 (K.K.), Challenging Exploratory Research No. 25620138 (K.K.), Young Scientists (A) No. 15H05493 (K.K.) and Scientific Research (A) No. 25246017 (S.T.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Japan, by Platform for Dynamic Approaches to Living System (MEXT) Japan, by the Regional Innovation Strategy Support Program (MEXT) Japan and by PRESTO (Design and Control of Cellular Functions) (K.K.) of Japan Science of Technology (JST).

Author information




K.K. and S.T. designed the research; K.K. performed the research and analysed data; K.K., K.A. and S.T. designed the electrophysiological measurement of a single Cx43-eGFP channel current; R.K. and T.O. contributed to the device concept and fabrication and K.K. and S.T. co-wrote the paper. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Shoji Takeuchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4343 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamiya, K., Kawano, R., Osaki, T. et al. Cell-sized asymmetric lipid vesicles facilitate the investigation of asymmetric membranes. Nature Chem 8, 881–889 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing