Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembled molecular p/n junctions for applications in dye-sensitized solar energy conversion

A Corrigendum to this article was published on 22 September 2016

This article has been updated

Abstract

The achievement of long-lived photoinduced redox separation lifetimes has long been a central goal of molecular-based solar energy conversion strategies. The longer the redox-separation lifetime, the more time available for useful work to be extracted from the absorbed photon energy. Here we describe a novel strategy for dye-sensitized solar energy applications in which redox-separated lifetimes on the order of milliseconds to seconds can be achieved based on a simple toolkit of molecular components. Specifically, molecular chromophores (C), electron acceptors (A) and electron donors (D) were self-assembled on the surfaces of mesoporous, transparent conducting indium tin oxide nanoparticle (nanoITO) electrodes to prepare both photoanode (nanoITO|–A–C–D) and photocathode (nanoITO|–D–C–A) assemblies. Nanosecond transient-absorption and steady-state photolysis measurements show that the electrodes function microscopically as molecular analogues of semiconductor p/n junctions. These results point to a new chemical strategy for dye-sensitized solar energy conversion based on molecular excited states and electron acceptors/donors on the surfaces of transparent conducting oxide nanoparticle electrodes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Layer-by-layer molecular p/n junction assemblies on mesoporous nanoITO electrodes.
Figure 2: UV-vis absorptivity and absorbance spectra for individual molecular components and assembled photoanodes, respectively.
Figure 3: Summary of bias-dependent transient-absorption measurements on the photoanode assembly nanoITO|–MV2+–RuP22+–DA.
Figure 4: Summary of bias-dependent transient-absorption measurements on the photocathode assembly nanoITO|–DA–RuP22+–MV2+.
Figure 5: Steady-state photolysis of photoanode and photocathode assemblies.

Similar content being viewed by others

Change history

  • 24 August 2016

    In the version of this Article originally published, the affiliation details for Kyung-Ryang Wee were not correct, these have been updated in the online versions of this paper.

References

  1. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    CAS  Google Scholar 

  2. Meyer, T. J. Chemical approaches to artificial photosynthesis. Acc. Chem. Res. 22, 163–170 (1989).

    CAS  Google Scholar 

  3. Alstrum-Acevedo, J. H., Brennaman, M. K. & Meyer, T. J. Chemical approaches to artificial photosynthesis. 2. Inorg. Chem. 44, 6802–6827 (2005).

    CAS  PubMed  Google Scholar 

  4. Chakraborty, S., Wadas, T. J., Hester, H., Schmehl, R. & Eisenberg, R. Platinum chromophore-based systems for photoinduced charge separation: a molecular design approach for artificial photosynthesis. Inorg. Chem. 44, 6865–6878 (2005).

    CAS  PubMed  Google Scholar 

  5. Kaschak, D. M., Johnson, S. A., Waraksa, C. C., Pogue, J. & Mallouk, T. E. Artificial photosynthesis in lamellar assemblies of metal poly(pyridyl) complexes and metalloporphyrins. Coord. Chem. Rev. 186, 403–416 (1999).

    Google Scholar 

  6. Wasielewski, M. R. Photoinduced electron transfer in supramolecular systems for artificial photosynthesis. Chem. Rev. 92, 435–461 (1992).

    CAS  Google Scholar 

  7. Gust, D. et al. Efficient multistep photoinitiated electron transfer in a molecular pentad. Science 248, 199–201 (1990).

    CAS  PubMed  Google Scholar 

  8. Gust, D. & Moore, T. A. Mimicking photosynthesis. Science 244, 35–41 (1989).

    CAS  PubMed  Google Scholar 

  9. Moore, T. A. et al. Photodriven charge separation in a carotenoporphyrin–quinone triad. Nature 307, 630–632 (1984).

    CAS  Google Scholar 

  10. Yonemoto, E. H., Riley, R. L., Atherton, S. J., Schmehl, R. H. & Mallouk, T. E. Photoinduced electron transfer in covalently linked ruthenium tris(bipyridyl)–viologen molecules: observation of back electron transfer in the Marcus inverted region. J. Am. Chem. Soc. 114, 8081–8087 (1992).

    CAS  Google Scholar 

  11. Sherman, B. D. et al. Evolution of reaction center mimics to systems capable of generating solar fuel. Photosynth. Res. 120, 59–70 (2014).

    CAS  PubMed  Google Scholar 

  12. Massari, A. M. et al. Ultrathin micropatterned porphyrin films assembled via zirconium phosphonate chemistry. Polyhedron 22, 3065–3072 (2003).

    CAS  Google Scholar 

  13. Imahori, H. et al. Light-harvesting and photocurrent generation by gold electrodes modified with mixed self-assembled monolayers of boron−dipyrrin and ferrocene−porphyrin−fullerene triad. J. Am. Chem. Soc. 123, 100–110 (2001).

    CAS  PubMed  Google Scholar 

  14. Vermeulen, L. A., Snover, J. L., Sapochak, L. S. & Thompson, M. E. Efficient photoinduced charge separation in layered zirconium viologen phosphonate compounds. J. Am. Chem. Soc. 115, 11767–11774 (1993).

    CAS  Google Scholar 

  15. Farnum, B. H., Nakada, A., Ishitani, O. & Meyer, T. J. Bias-dependent oxidative or reductive quenching of a molecular excited-state assembly bound to a transparent conductive oxide. J. Phys. Chem. C 119, 25180–25187 (2015).

    CAS  Google Scholar 

  16. Farnum, B. H., Morseth, Z. A., Brennaman, M. K., Papanikolas, J. M. & Meyer, T. J. Driving force dependent, photoinduced electron transfer at degenerately doped, optically transparent semiconductor nanoparticle interfaces. J. Am. Chem. Soc. 136, 15869–15872 (2014).

    CAS  PubMed  Google Scholar 

  17. Farnum, B. H., Morseth, Z. A., Brennaman, M. K., Papanikolas, J. M. & Meyer, T. J. Application of degenerately doped metal oxides in the study of photoinduced interfacial electron transfer. J. Phys. Chem. B 119, 7698–7711 (2015).

    CAS  PubMed  Google Scholar 

  18. Farnum, B. H. et al. Photoinduced interfacial electron transfer within a mesoporous transparent conducting oxide film. J. Am. Chem. Soc. 136, 2208–2211 (2014).

    CAS  PubMed  Google Scholar 

  19. Hoertz, P. G., Chen, Z., Kent, C. A. & Meyer, T. J. Application of high surface area tin-doped indium oxide nanoparticle films as transparent conducting electrodes. Inorg. Chem. 49, 8179–8181 (2010).

    CAS  PubMed  Google Scholar 

  20. Chen, Z. et al. Nonaqueous catalytic water oxidation. J. Am. Chem. Soc. 132, 17670–17673 (2010).

    CAS  PubMed  Google Scholar 

  21. Fang, M., Kaschak, D. M., Sutorik, A. C. & Mallouk, T. E. A ‘mix and match’ ionic−covalent strategy for self-assembly of inorganic multilayer films. J. Am. Chem. Soc. 119, 12184–12191 (1997).

    CAS  Google Scholar 

  22. Kaschak, D. M. et al. Photoinduced energy and electron transfer reactions in lamellar polyanion/polycation thin films: toward an inorganic ‘leaf’. J. Am. Chem. Soc. 121, 3435–3445 (1999).

    CAS  Google Scholar 

  23. Ishida, T. et al. Self-assembled monolayer and multilayer formation using redox-active Ru complex with phosphonic acids on silicon oxide surface. Appl. Surf. Sci. 255, 8824–8830 (2009).

    CAS  Google Scholar 

  24. Akatsuka, K. et al. Photoelectrochemical properties of alternating multilayer films composed of titania nanosheets and Zn porphyrin. Langmuir 23, 6730–6736 (2007).

    CAS  PubMed  Google Scholar 

  25. Katz, H. E. Multilayer deposition of novel organophosphonates with zirconium(IV). Chem. Mater. 6, 2227–2232 (1994).

    CAS  Google Scholar 

  26. Ungashe, S. B., Wilson, W. L., Katz, H. E., Scheller, G. R. & Putvinski, T. M. Synthesis, self-assembly, and photophysical dynamics of stacked layers of porphyrin and viologen phosphonates. J. Am. Chem. Soc. 114, 8717–8719 (1992).

    CAS  Google Scholar 

  27. Nayak, A. et al. Synthesis and photophysical characterization of porphyrin and porphyrin–Ru(II) polypyridyl chromophore–catalyst assemblies on mesoporous metal oxides. Chem. Sci. 5, 3115–3119 (2014).

    CAS  Google Scholar 

  28. Hanson, K. et al. Self-assembled bilayer films of ruthenium(II)/polypyridyl complexes through layer-by-layer deposition on nanostructured metal oxides. Angew. Chem. Int. Ed. 51, 12782–12785 (2012).

    CAS  Google Scholar 

  29. Ardo, S. & Meyer, G. J. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem. Soc. Rev. 38, 115–164 (2009).

    CAS  PubMed  Google Scholar 

  30. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010).

    CAS  PubMed  Google Scholar 

  31. Knauf, R. R., Kalanyan, B., Parsons, G. N. & Dempsey, J. L. Charge recombination dynamics in sensitized SnO2/TiO2 core/shell photoanodes. J. Phys. Chem. C 119, 28353–28360 (2015).

    CAS  Google Scholar 

  32. Nattestad, A. et al. Highly efficient photocathodes for dye-sensitized tandem solar cells. Nature Mater. 9, 31–35 (2010).

    CAS  Google Scholar 

  33. Weidelener, M. et al. Synthesis and characterization of perylene–bithiophene–triphenylamine triads: studies on the effect of alkyl-substitution in p-type NiO based photocathodes. J. Mater. Chem. 22, 7366–7379 (2012).

    CAS  Google Scholar 

  34. Gibson, E. A. et al. A p-type NiO-based dye-sensitized solar cell with an open-circuit voltage of 0.35 V. Angew. Chem. Int. Ed. 48, 4402–4405 (2009).

    CAS  Google Scholar 

  35. Warnan, J. et al. Multichromophoric sensitizers based on squaraine for NiO based dye-sensitized solar cells. J. Phys. Chem. C 118, 103–113 (2014).

    CAS  Google Scholar 

  36. Zhang, L. et al. Long-lived charge separated state in NiO-based p-type dye-sensitized solar cells with simple cyclometalated iridium complexes. J. Phys. Chem. Lett. 5, 2254–2258 (2014).

    PubMed  Google Scholar 

  37. Felderhoff, M., Heinen, S., Molisho, N., Webersinn, S. & Walder, L. Molecular suppression of the pimerization of viologens attached to nanocrystalline titanium dioxide thin-film electrodes. Helv. Chim. Acta 83, 181–192 (2000).

    CAS  Google Scholar 

  38. Hanson, K. et al. Structure–property relationships in phosphonate-derivatized, Ru(II) polypyridyl dyes on metal oxide surfaces in an aqueous environment. J. Phys. Chem. C 116, 14837–14847 (2012).

    CAS  Google Scholar 

  39. Watanabe, T. & Honda, K. Measurement of the extinction coefficient of the methyl viologen cation radical and the efficiency of its formation by semiconductor photocatalysis. J. Phys. Chem. 86, 2617–2619 (1982).

    CAS  Google Scholar 

  40. Lapides, A. M. et al. Synthesis, characterization, and water oxidation by a molecular chromophore–catalyst assembly prepared by atomic layer deposition. The ‘mummy’ strategy. Chem. Sci. 6, 6398–6406 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Danielson, E., Elliott, C. M., Merkert, J. W. & Meyer, T. J. Photochemically induced charge separation at the molecular level. A chromophore quencher complex containing both an electron transfer donor and an acceptor. J. Am. Chem. Soc. 109, 2519–2520 (1987).

    CAS  Google Scholar 

  42. Treadway, J. A., Chen, P., Rutherford, T. J., Keene, F. R. & Meyer, T. J. Mapping electron transfer pathways in a chromophore–quencher triad. J. Phys. Chem. A 101, 6824–6826 (1997).

    CAS  Google Scholar 

  43. Nelson, J. Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Phys. Rev. B 59, 374–380 (1999).

    Google Scholar 

  44. Lindsey, C. P. & Patterson, G. D. Detailed comparison of the Williams–Watts and Cole–Davidson functions. J. Chem. Phys. 73, 3348–3357 (1980).

    CAS  Google Scholar 

  45. Williams, G. & Watts, D. C. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1969).

    Google Scholar 

  46. Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004).

    CAS  PubMed  Google Scholar 

  47. Huang, Z. et al. Dye-controlled interfacial electron transfer for high-current indium tin oxide photocathodes. Angew. Chem. Int. Ed. 54, 6857–6861 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award No. DE-FG02-06ER15788.

Author information

Authors and Affiliations

Authors

Contributions

B.H.F. and T.J.M. conceived and designed the experiments. K.R.W. synthesized the molecular species. B.H.F. assembled the electrodes and performed the transient-absorption and photolysis experiments. B.H.F. and T.J.M. wrote the paper.

Corresponding author

Correspondence to Thomas J. Meyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farnum, B., Wee, KR. & Meyer, T. Self-assembled molecular p/n junctions for applications in dye-sensitized solar energy conversion. Nature Chem 8, 845–852 (2016). https://doi.org/10.1038/nchem.2536

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2536

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing