Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional

Abstract

One atom or molecule binds to another through various types of bond, the strengths of which range from several meV to several eV. Although some computational methods can provide accurate descriptions of all bond types, those methods are not efficient enough for many studies (for example, large systems, ab initio molecular dynamics and high-throughput searches for functional materials). Here, we show that the recently developed non-empirical strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation (meta-GGA) within the density functional theory framework predicts accurate geometries and energies of diversely bonded molecules and materials (including covalent, metallic, ionic, hydrogen and van der Waals bonds). This represents a significant improvement at comparable efficiency over its predecessors, the GGAs that currently dominate materials computation. Often, SCAN matches or improves on the accuracy of a computationally expensive hybrid functional, at almost-GGA cost. SCAN is therefore expected to have a broad impact on chemistry and materials science.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: SCAN captures the intermediate-range, many-body van der Waals interactions necessary for a quantitative description of various ices and gas-phase water hexamers.
Figure 2: SCAN simultaneously describes covalent and metallic bonding across the Si phase diagram.

References

  1. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  2. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  3. Sun, J., Perdew, J. P. & Seidl, M. Correlation energy of the uniform electron gas from an interpolation between high-and low-density limits. Phys. Rev. B 81, 085123 (2010).

    Article  CAS  Google Scholar 

  4. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Perdew, J. P., Burke, K. & Ernzerhof, M. Reply to the comment by Y. Zhang and W. Yang. Phys. Rev. Lett. 80, 891 (1998).

    Article  CAS  Google Scholar 

  7. Perdew, J. P., Ruzsinszky, A., Sun, J. & Burke, K. Gedanken densities and exact constraints in density functional theory. J. Chem. Phys. 140, 18A533 (2014).

    Article  CAS  Google Scholar 

  8. Sun, J., Perdew, J. P. & Ruzsinszky, A. Semilocal density functional obeying a strongly-tightened bound for exchange. Proc. Natl Acad. Sci. USA 112, 685–689 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Becke, A. D. & Rousssel, M. R. Exchange holes in inhomogeneous systems: a coordinate-space model. Phys. Rev. A 39, 3761–3767 (1989).

    Article  CAS  Google Scholar 

  10. Tao, J., Perdew, J. P., Staroverov, V. N. & Scuseria, G. E. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett. 91, 146401 (2003).

    Article  CAS  Google Scholar 

  11. Zhao, Y. & Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125, 194101 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Constantin, L. A. & Sun, J. Workhorse semilocal density functional for condensed matter physics and quantum chemistry. Phys. Rev. Lett. 103, 026403 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Sun, J., Xiao, B. & Ruzsinszky, A. Effect of the orbital-overlap dependence in the meta-generalized gradient approximation. J. Chem. Phys. 137, 051101 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Del Campo, J. M., Gazquez, J. L., Trickey, S. B. & Vela, A. A new meta-GGA exchange functional based on an improved constraint-based GGA. Chem. Phys. Lett. 543, 179–183 (2012).

    Article  CAS  Google Scholar 

  15. Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Madsen, G. K. H., Ferrighi, L. & Hammer, B. Treatment of layered structures using a semilocal meta-GGA density functional. J. Phys. Chem. Lett. 1, 515–519 (2010).

    Article  CAS  Google Scholar 

  17. Becke, A. D. & Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397 (1990).

    Article  CAS  Google Scholar 

  18. Silvi, B. & Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371, 683–686 (1994).

    Article  CAS  Google Scholar 

  19. Sun, J. et al. Density functionals that recognize covalent, metallic, and weak bonds. Phys. Rev. Lett. 111, 106401 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105, 9982–9985 (1996).

    Article  CAS  Google Scholar 

  21. Furche, F. & Perdew, J. P. The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry. J. Chem. Phys. 124, 044103 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Santra, B. et al. Hydrogen bonds and van der Waals forces in ice at ambient and high pressures. Phys. Rev. Lett. 107, 185701 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground state electron density and free atom reference data. Phys. Rev. Lett. 102, 073005 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Santra, B. et al. On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures. J. Chem. Phys. 139, 154702 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Santra, B. et al. On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters: the water hexamer. J. Chem. Phys. 129, 194111 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. DiStasio, R. Jr, Santra, B., Li, Z., Wu, X. & Car, R. The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water. J. Chem. Phys. 141, 084502 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).

    Article  CAS  Google Scholar 

  28. Pederson, M. R., Ruzsinszky, A. & Perdew, J. P. Self-interaction correction with unitary invariance in density functional theory. J. Chem. Phys. 140, 121103 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Hennig, R. G. et al. Phase transformation in Si from semiconducting diamond to metallic β-Sn phase in QMC and DFT under hydrostatic and anisotropic stress. Phys. Rev. B 82, 014101 (2010).

    Article  CAS  Google Scholar 

  30. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  31. Xiao, B. et al. Testing density functionals for structural phase transitions of solids under pressure: Si, SiO2 and Zr. Phys. Rev. B 88, 184103 (2013).

  32. Batista, E. R. et al. Comparison of screened hybrid density functional theory to diffusion Monte Carlo in calculations of total energies of silicon phases and defects. Phys. Rev. B 74, 121102 (2006).

    Article  CAS  Google Scholar 

  33. Sasaki, H., Tokizaki, E., Terashima, K. & Kimura, S. Density variation of molten silicon measured by an improved archimedian method. Jpn J. Appl. Phys. 33, 3803–3807 (1994).

    Article  CAS  Google Scholar 

  34. Waseda, Y. et al. High temperature X-ray diffraction study of melt structure of silicon. Jpn J. Appl. Phys. 34, 4124–4128 (1995).

    Article  CAS  Google Scholar 

  35. Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).

    Article  CAS  Google Scholar 

  36. Kitchaev, D. A. et al. Energetics of MnO2 polymorphs in density functional theory. Phys. Rev. B 93, 045132 (2016).

    Article  CAS  Google Scholar 

  37. Bilc, D. I. et al. Hybrid exchange-correlation functional for accurate prediction of the electronic and structural properties of ferroelectric oxides. Phys. Rev. B 77, 165107 (2008).

    Article  CAS  Google Scholar 

  38. Stroppa, A. & Picozzi, S. Hybrid functional study of proper and improper multiferroics. Phys. Chem. Chem. Phys. 12, 5405–5416 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Wu, Z. & Cohen, R. E. More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006).

    Article  CAS  Google Scholar 

  40. Neaton, J. B., Ederer, C., Waghmare, U. V., Spaldin, N. A. & Rabe, K. M. First-principles study of spontaneous polarization in multiferroic BiFeO3 . Phys. Rev. B 71, 014113 (2005).

    Article  CAS  Google Scholar 

  41. Peng, H., Yang, Z., Sun, J. & Perdew, J. P. SCAN+rVV10: a promising van der Waals density functional. Preprint at https://arxiv.org/abs/1510.05712 (2015).

  42. Frisch, M. J. et al. Gaussian 03 Revision D.02 (Gaussian, 2004).

    Google Scholar 

  43. Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comp. Phys. Comm. 180, 2175–2196 (2009).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  45. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1999).

    Article  Google Scholar 

  46. Brandenburg, J. G., Maas, T. & Grimme, S. Benchmarking DFT and semiempirical methods on structures and lattice energies for ten ice polymorphs. J. Chem. Phys. 142, 124104 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Whalley, E. Energies of the phases of ice at zero temperature and pressure. J. Chem. Phys. 81, 4087–4092 (1984).

    Article  CAS  Google Scholar 

  48. Xu, X. & Goddard, III, W. A. Bonding properties of the water dimer: a comparative study of density functional theories. J. Phys. Chem. A 108, 2305–2313 (2004).

    Article  CAS  Google Scholar 

  49. Shank, A. et al. Accurate ab initio and ‘hybrid’ potential energy surfaces, intramolecular vibrational energies, and classical IR spectrum of the water dimer. J. Chem. Phys. 130, 144314 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Rocher-Casterline, B. E., Ch'ng, L. C., Mollner, A. K. & Reisler, H. Determination of the bond dissociation energy (D0) of the water dimer, (H2O)2, by velocity map imaging. J. Chem. Phys. 134, 211101 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Salek, P. et al. A comparison of density-functional-theory and coupled-cluster frequency-dependent polarizabilities and hyperpolarizabilities. Mol. Phys. 103, 439–450 (2005).

    Article  CAS  Google Scholar 

  52. Lebeugle, D., Colson, D., Forget, A. & Viret, M. Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl. Phys. Lett. 91, 022907 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported as part of the Center for the Computational Design of Functional Layered Materials, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under award no. DE-SC0012575. Computer equipment in Temple's HPC Center was supported by the National Science Foundation (NSF) under major research instrumentation grant no. CNS-09-58854. J.S., R.C.R., Y.Z., Z.S., A.R. and H.P. acknowledge support in the form of computer time from the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility, and the HPC Center of Temple University. X.W. and Y.Z. acknowledge support from the American Chemical Society Petroleum Research Fund (ACS PRF) under grant no. 53482-DNI6. J.S., A.R., X.W. and J.P.P. thank R. Car, G.I. Csonka, B. Santra and R. DiStasio Jr for discussions. This article is dedicated to the memory of Walter Kohn.

Author information

Authors and Affiliations

Authors

Contributions

J.S. and J.P.P. designed the project. J.S., R.C.R., Y.Z., Z.S., A.R. and H.P. carried out the calculations. J.S. implemented the SCAN metaGGA and prepared the initial manuscript. All authors contributed to the discussions and revisions of the manuscript.

Corresponding author

Correspondence to Jianwei Sun.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 362 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Remsing, R., Zhang, Y. et al. Accurate first-principles structures and energies of diversely bonded systems from an efficient density functional. Nature Chem 8, 831–836 (2016). https://doi.org/10.1038/nchem.2535

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2535

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing