Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Wide-dynamic-range kinetic investigations of deep proton tunnelling in proteins

This article has been updated

Abstract

Directional proton transport along ‘wires’ that feed biochemical reactions in proteins is poorly understood. Amino-acid residues with high pKa are seldom considered as active transport elements in such wires because of their large classical barrier for proton dissociation. Here, we use the light-triggered proton wire of the green fluorescent protein to study its ground-electronic-state proton-transport kinetics, revealing a large temperature-dependent kinetic isotope effect. We show that ‘deep’ proton tunnelling between hydrogen-bonded oxygen atoms with a typical donor–acceptor distance of 2.7–2.8 Å fully accounts for the rates at all temperatures, including the unexpectedly large value (2.5 × 109 s−1) found at room temperature. The rate-limiting step in green fluorescent protein is assigned to tunnelling of the ionization-resistant serine hydroxyl proton. This suggests how high-pKa residues within a proton wire can act as a ‘tunnel diode’ to kinetically trap protons and control the direction of proton flow.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deep tunnelling at the environmental transition state.
Figure 2: The photocycle and chemical structure of GFP.
Figure 3: Transient absorption measurements as a function of temperature for GFP.
Figure 4: Arrhenius plot of the ground-state (I → A) proton transfer rates in GFP.
Figure 5: Hypothetical proton wire composed of water molecules and uncharged amino acid residues with high local pKa.

Similar content being viewed by others

Change history

  • 09 June 2016

    In the original version of this Article the caption for Fig. 5a contained incorrect information. k d was in fact shown by a black arrow. All versions of the Article have been corrected.

References

  1. Kennis, J. T. M. et al. Uncovering the hidden ground state of green fluorescent protein. Proc. Natl Acad. Sci. USA 101, 17988–17993 (2004).

    CAS  PubMed  Google Scholar 

  2. Kohen, A., Cannio, R., Bartolucci, S. & Klinman, J. P. Enzyme dynamics and hydrogen tunnelling in a thermophilic alcohol dehydrogenase. Nature 399, 496–499 (1999).

    CAS  PubMed  Google Scholar 

  3. Masgrau, L. et al. Atomic description of an enzyme reaction dominated by proton tunneling. Science 312, 237–241 (2006).

    CAS  PubMed  Google Scholar 

  4. Bhabha, G. et al. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 332, 234–238 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Knapp, M. J., Rickert, K. & Klinman, J. P. Temperature-dependent isotope effects in soybean lipoxygenase-1: correlating hydrogen tunneling with protein dynamics. J. Am. Chem. Soc. 124, 3865–3874 (2002).

    CAS  PubMed  Google Scholar 

  6. Garczarek, F. & Gerwert, K. Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439, 109–112 (2006).

    CAS  PubMed  Google Scholar 

  7. Kuznetsov, A. M. & Ulstrup, J. Proton and hydrogen atom tunnelling in hydrolytic and redox enzyme catalysis. Can. J. Chem. 77, 1085–1096 (1999).

    CAS  Google Scholar 

  8. Hammes-Schiffer, S. & Stuchebrukhov, A. A. Theory of coupled electron and proton transfer reactions. Chem. Rev. 110, 6939–6960 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Antoniou, D. & Schwartz, S. D. Large kinetic isotope effects in enzymatic proton transfer and the role of substrate oscillations. Proc. Natl Acad. Sci. USA 94, 12360–12365 (1997).

    CAS  PubMed  Google Scholar 

  10. Pu, J. Z., Gao, J. L. & Truhlar, D. G. Multidimensional tunneling, recrossing, and the transmission coefficient for enzymatic reactions. Chem. Rev. 106, 3140–3169 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cui, Q. & Karplus, M. Promoting modes and demoting modes in enzyme-catalyzed proton transfer reactions: a study of models and realistic systems. J. Phys. Chem. B 106, 7927–7947 (2002).

    CAS  Google Scholar 

  12. Kiefer, P. M. & Hynes, J. T. Theoretical aspects of tunneling proton transfer reactions in a polar environment. J. Phys. Org. Chem. 23, 632–646 (2010).

    CAS  Google Scholar 

  13. Saraste, M. Oxidative phosphorylation at the fin de siecle. Science 283, 1488–1493 (1999).

    CAS  PubMed  Google Scholar 

  14. Luecke, H., Richter, H. T. & Lanyi, J. K. Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. Science 280, 1934–1937 (1998).

    CAS  PubMed  Google Scholar 

  15. DeCoursey, T. E. Voltage-gated proton channels and other proton transfer pathways. Physiol. Rev. 83, 475–579 (2003).

    CAS  PubMed  Google Scholar 

  16. Belevich, I., Verkhovsky, M. I. & Wikstrom, M. Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase. Nature 440, 829–832 (2006).

    CAS  PubMed  Google Scholar 

  17. Wraight, C. A. Chance and design—proton transfer in water, channels and bioenergetic proteins. Biochim. Biophys. Acta 1757, 886–912 (2006).

    CAS  PubMed  Google Scholar 

  18. Nagle, J. F. & Morowitz, H. J. Molecular mechanisms for proton transport in membranes. Proc. Natl Acad. Sci. USA 75, 298–302 (1978).

    CAS  PubMed  Google Scholar 

  19. Wikstrom, M., Sharma, V., Kaila, V. R. I., Hosler, J. P. & Hummer, G. New perspectives on proton pumping in cellular respiration. Chem. Rev. 115, 2196–2221 (2015).

    CAS  PubMed  Google Scholar 

  20. Okamura, M. Y., Paddock, M. L., Graige, M. S. & Feher, G. Proton and electron transfer in bacterial reaction centers. Biochim. Biophys. Acta 1458, 148–163 (2000).

    CAS  PubMed  Google Scholar 

  21. Nagano, S. & Poulos, T. L. Crystallographic study on the dioxygen complex of wild-type and mutant cytochrome P450cam—implications for the dioxygen activation mechanism. J. Biol. Chem. 280, 31659–31663 (2005).

    CAS  PubMed  Google Scholar 

  22. Truhlar, D. G. Tunneling in enzymatic and nonenzymatic hydrogen transfer reactions. J. Phys. Org. Chem. 23, 660–676 (2010).

    CAS  Google Scholar 

  23. Van Thor, J. J., Georgiev, G. Y., Towrie, M. & Sage, J. T. Ultrafast and low barrier motions in the photoreactions of the green fluorescent protein. J. Biol. Chem. 280, 33652–33659 (2005).

    CAS  PubMed  Google Scholar 

  24. Braun-Sand, S., Strajbl, M. & Warshel, A. Studies of proton translocations in biological systems: simulating proton transport in carbonic anhydrase by EVB-based models. Biophys. J. 87, 2221–2239 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, H., Sun, Q., Li, Z., Nanbu, S. & Smith, S. S. First principle study of proton transfer in the green fluorescent protein (GFP): ab initio PES in a cluster model. Comp. Theor. Chem. 990, 185–193 (2012).

    CAS  Google Scholar 

  26. Pomes, R. & Roux, B. Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel. Biophys. J. 71, 19–39 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vendrell, O., Gelabert, R., Moreno, M. & Lluch, J. M. A potential energy function for heterogeneous proton-wires. Ground and photoactive states of the proton-wire in the green fluorescent protein. J. Chem. Theory Comput. 4, 1138–1150 (2008).

    CAS  PubMed  Google Scholar 

  28. Benabbas, A., Salna, B., Sage, J. T. & Champion, P. M. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: comparison of the quantum and classical treatment of donor–acceptor motion in a protein environment. J. Chem. Phys. 142, 114101 (2015).

    PubMed  Google Scholar 

  29. Garcia-Viloca, M., Gao, J., Karplus, M. & Truhlar, D. G. How enzymes work: analysis by modern rate theory and computer simulations. Science 303, 186–195 (2004).

    CAS  PubMed  Google Scholar 

  30. Kamerlin, S. C. L. & Warshel, A. At the dawn of the 21st century: is dynamics the missing link for understanding enzyme catalysis? Proteins 78, 1339–1375 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chattoraj, M., King, B. A., Bublitz, G. U. & Boxer, S. G. Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc. Natl Acad. Sci. USA 93, 8362–8367 (1996).

    CAS  PubMed  Google Scholar 

  32. Nesheim, J. C. & Lipscomb, J. D. Large kinetic isotope effects in methane oxidation catalyzed by methane monooxygenase: evidence for C–H bond cleavage in a reaction cycle intermediate. Biochemistry 35, 10240–10247 (1996).

    CAS  PubMed  Google Scholar 

  33. Roston, D., Islam, Z. & Kohen, A. Isotope effects as probes for enzyme catalyzed hydrogen-transfer reactions. Molecules 18, 5543–5567 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Sutcliffe, M. J. et al. Hydrogen tunnelling in enzyme-catalysed H-transfer reactions: flavoprotein and quinoprotein systems. Phil. Trans. R. Soc. Lond. B 361, 1375–1386 (2006).

    CAS  Google Scholar 

  35. Hay, S. & Scrutton, N. S. Good vibrations in enzyme-catalysed reactions. Nature Chem. 4, 161–168 (2012).

    CAS  Google Scholar 

  36. Hay, S., Sutcliffe, M. J. & Scrutton, N. S. Promoting motions in enzyme catalysis probed by pressure studies of kinetic isotope effects. Proc. Natl Acad. Sci. USA 104, 507–512 (2007).

    CAS  PubMed  Google Scholar 

  37. Hatcher, E., Soudackov, A. V. & Hammes-Schiffer, S. Proton-coupled electron transfer in soybean lipoxygenase. J. Am. Chem. Soc. 126, 5763–5775 (2004).

    CAS  PubMed  Google Scholar 

  38. Thompson, L. M. et al. Analytical harmonic vibrational frequencies for the green fluorescent protein computed with ONIOM: chromophore mode character and its response to environment. J. Chem. Theory Comput. 10, 751–766 (2014).

    CAS  PubMed  Google Scholar 

  39. Andrews, B. T., Gosavi, S., Finke, J. M., Onuchic, J. N. & Jennings, P. A. The dual-basin landscape in GFP folding. Proc. Natl Acad. Sci. USA 105, 12283–12288 (2008).

    CAS  PubMed  Google Scholar 

  40. Novak, A. Hydrogen bonding in solids. Correlation of spectroscopic and crystallographic data. Struct. Bond. 18, 177–216 (1974).

    CAS  Google Scholar 

  41. Premont-Schwarz, M., Barak, T., Pines, D., Nibbering, E. T. J. & Pines, E. Ultrafast excited-state proton-transfer reaction of 1-naphthol-3,6-disulfonate and several 5-substituted 1-naphthol derivatives. J. Phys. Chem. B 117, 4594–4603 (2013).

    CAS  PubMed  Google Scholar 

  42. Shinobu, A., Gottfried, J. P., Schierbeek, A. J. & Agmon, N. Visualizing proton antenna in a high-resolution green fluorescent protein structure. J. Am. Chem. Soc. 132, 11093–11102 (2010).

    CAS  PubMed  Google Scholar 

  43. van Thor, J. J., Zanetti, G., Ronayne, K. L. & Towrie, M. Structural events in the photocycle of green fluorescent protein. J. Phys. Chem. B 109, 16099–16108 (2005).

    CAS  PubMed  Google Scholar 

  44. Walrafen, G. E. & Pugh, E. Raman combinations and stretching overtones from water, heavy water, and NaCl in water at shifts to ca. 7000 cm–1. J. Solution Chem. 33, 81–97 (2004).

    CAS  Google Scholar 

  45. Laptenok, S. P. et al. Complete proton transfer cycle in GFP and its T203V and S205V mutants. Angew. Chem. Int. Ed. 54, 9303–9307 (2015).

    CAS  Google Scholar 

  46. Shu, X. et al. An alternative excited-state proton transfer pathway in green fluorescent protein variant S205V. Protein Sci. 16, 2703–2710 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Okamura, M. Y. & Feher, G. Proton transfer in reaction centers from photosynthetic bacteria. Annu. Rev. Biochem. 61, 861–896 (1992).

    CAS  PubMed  Google Scholar 

  48. Pisliakov, A. V., Sharma, P. K., Chu, Z. T., Haranczyk, M. & Warshel, A. Electrostatic basis for the unidirectionality of the primary proton transfer in cytochrome c oxidase. Proc. Natl Acad. Sci. USA 105, 7726–7731 (2008).

    CAS  PubMed  Google Scholar 

  49. Goyal, P., Yang, S. & Cui, Q. Microscopic basis for kinetic gating in cytochrome c oxidase: insights from QM/MM analysis. Chem. Sci. 6, 826–841 (2015).

    CAS  PubMed  Google Scholar 

  50. Xu, J. & Voth, G. A. Computer simulation of explicit proton translocation in cytochrome c oxidase: the D-pathway. Proc. Natl Acad. Sci. USA 102, 6795–6800 (2005).

    CAS  PubMed  Google Scholar 

  51. DeCoursey, T. E. & Hosler, J. Philosophy of voltage-gated proton channels. J. R. Soc. Interface 11, 20130799 (2014).

    PubMed  PubMed Central  Google Scholar 

  52. Sagnella, D. E. & Straub, J. E. Directed energy “funneling” mechanism for heme cooling following ligand photolysis or direct excitation in solvated carbonmonoxy myoglobin. J. Phys. Chem. B 105, 7057–7063 (2001).

    CAS  Google Scholar 

  53. Baradaran, R., Berrisford, J. M., Minhas, G. S. & Sazanov, L. A. Crystal structure of the entire respiratory complex I. Nature 494, 443–448 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Ginovska-Pangovska, B. et al. Molecular dynamics study of the proposed proton transport pathways in FeFe -hydrogenase. Biochim. Biophys. Acta. 1837, 131–138 (2014).

    CAS  PubMed  Google Scholar 

  55. Saito, K., Rutherford, A. W. & Ishikita, H. Mechanism of proton-coupled quinone reduction in photosystem II. Proc. Natl Acad. Sci. USA 110, 954–959 (2014).

    Google Scholar 

  56. Van Thor, J. J., Pierik, A. J., Nugteren-Roodzant, I., Xie, A. H. & Hellingwerf, K. J. Characterization of the photoconversion of green fluorescent protein with FTIR spectroscopy. Biochemistry 37, 16915–16921 (1998).

    CAS  PubMed  Google Scholar 

  57. Yu, A. C., Ye, X., Ionascu, D., Cao, W. X. & Champion, P. M. Two-color pump–probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range. Rev. Sci. Instrum. 76, 114301 (2005).

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation awards CHE-1243948 (P.M.C) and CHE-1026369 (P.M.C. and J.T.S.) and EPSRC award EP/I003304/1 (J.v.T.). The authors thank M. Bearpark and L. Thompson for providing the ONIOM files associated with the GFP normal mode calculation and A. Fitzpatrick for preparing the E222D mutant. A. McClelland and B. Kellner are also thanked for early contributions to this work.

Author information

Authors and Affiliations

Authors

Contributions

A.B. and B.S. carried out the experiments, performed the data analysis, and helped to develop the theoretical models. In doing so, they contributed equally to this work. P.M.C., J.v.T. and J.T.S. conceived the experiments and developed the theoretical approaches. P.M.C. wrote the paper with input from the other authors.

Corresponding author

Correspondence to Paul M. Champion.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salna, B., Benabbas, A., Sage, J. et al. Wide-dynamic-range kinetic investigations of deep proton tunnelling in proteins. Nature Chem 8, 874–880 (2016). https://doi.org/10.1038/nchem.2527

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2527

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing