Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

In situ real-time imaging of self-sorted supramolecular nanofibres

Abstract

Self-sorted supramolecular nanofibres—a multicomponent system that consists of several types of fibre, each composed of distinct building units—play a crucial role in complex, well-organized systems with sophisticated functions, such as living cells. Designing and controlling self-sorting events in synthetic materials and understanding their structures and dynamics in detail are important elements in developing functional artificial systems. Here, we describe the in situ real-time imaging of self-sorted supramolecular nanofibre hydrogels consisting of a peptide gelator and an amphiphilic phosphate. The use of appropriate fluorescent probes enabled the visualization of self-sorted fibres entangled in two and three dimensions through confocal laser scanning microscopy and super-resolution imaging, with 80 nm resolution. In situ time-lapse imaging showed that the two types of fibre have different formation rates and that their respective physicochemical properties remain intact in the gel. Moreover, we directly visualized stochastic non-synchronous fibre formation and observed a cooperative mechanism.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Self-sorting of supramolecular nanofibres.
Figure 2: In situ imaging of self-sorted supramolecular nanofibres by CLSM and STED.
Figure 3: Evaluation of physical and chemical properties of supramolecular nanofibres using CLSM.
Figure 4: Formation process for supramolecular nanofibres evaluated by CD spectroscopy and in situ real-time imaging.
Figure 5: In situ real-time imaging of self-sorted supramolecular nanofibres.

References

  1. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article  CAS  Google Scholar 

  2. He, Z., Jiang, W. & Schalley, C. A. Integrative self-sorting: a versatile strategy for the construction of complex supramolecular architecture. Chem. Soc. Rev. 44, 779–789 (2015).

    Article  CAS  Google Scholar 

  3. Raeburn, J. & Adams, D. J. Multicomponent low molecular weight gelators. Chem. Commun. 51, 5170–5180 (2015).

    Article  CAS  Google Scholar 

  4. Boekhoven, J., Koot, M., Wezendonk, T. A., Eelkema, R. & van Esch, J. H. A self-assembled delivery platform with post-production tunable release rate. J. Am. Chem. Soc. 134, 12908–12911 (2012).

    Article  CAS  Google Scholar 

  5. Zhang, W. et al. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science 334, 340–343 (2011).

    Article  CAS  Google Scholar 

  6. Alberts, B. et al. Molecular Biology of the Cell 5th edn, 965–1052 (Garland Science, 2008).

    Google Scholar 

  7. Omary, M. B., Coulombe, P. A. & McLean, W. H. I. Intermediate filament proteins and their associated diseases. N. Engl. J. Med. 351, 2087–2100 (2004).

    Article  CAS  Google Scholar 

  8. Fuchs, E. & Cleveland, D. W. A structural scaffolding of intermediate filaments in health and disease. Science 279, 514–519 (1998).

    Article  CAS  Google Scholar 

  9. Safont-Sempere, M. M., Fernández, G. & Würthner, F. Self-sorting phenomena in complex supramolecular systems. Chem. Rev. 111, 5784–5814 (2011).

    Article  CAS  Google Scholar 

  10. Gao, Y., Shi, J., Yuan, D. & Xu, B. Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nature Commun. 3, 1033 (2012).

    Article  Google Scholar 

  11. Adler-Abramovich, L. & Gazit, E. The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem. Soc. Rev. 43, 6881–6893 (2014).

    Article  CAS  Google Scholar 

  12. Silva, G. A. et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303, 1352–1355 (2004).

    Article  CAS  Google Scholar 

  13. Heeres, A. et al. Orthogonal self-assembly of low molecular weight hydrogelators and surfactants. J. Am. Chem. Soc. 125, 14252–14253 (2003).

    Article  CAS  Google Scholar 

  14. Sugiyasu, K., Kawano, S.-i., Fujita, N. & Shinkai, S. Self-sorting organogels with p–n heterojunction points. Chem. Mater. 20, 2863–2865 (2008).

    Article  CAS  Google Scholar 

  15. Ghosh, S., Li, X.-Q., Stepanenko, V. & Würthner, F. Control of H- and J-type π stacking by peripheral alkyl chains and self-sorting phenomena in perylene bisimide homo- and heteroaggregates. Chem. Eur. J. 14, 11343–11357 (2008).

    Article  CAS  Google Scholar 

  16. Pal, A., Besenius, P. & Sijbesma, R. P. Self-sorting in rodlike micelles of chiral bisurea bolaamphiphiles. J. Am. Chem. Soc. 133, 12987–12989 (2011).

    Article  CAS  Google Scholar 

  17. Prasanthkumar, S. et al. Organic donor–acceptor assemblies form coaxial p–n heterojunctions with high photoconductivity. Angew. Chem. Int. Ed. 54, 946–950 (2015).

    Article  CAS  Google Scholar 

  18. Ikeda, M. et al. Montmorillonite—supramolecular hydrogel hybrid for fluorocolorimetric sensing of polyamines. J. Am. Chem. Soc. 133, 1670–1673 (2011).

    Article  CAS  Google Scholar 

  19. Colquhoun, C. et al. The effect of self-sorting and co-assembly on the mechanical properties of low molecular weight hydrogels. Nanoscale 6, 13719–13725 (2014).

    Article  CAS  Google Scholar 

  20. Adhikari, B., Nanda, J. & Banerjee, A. Multicomponent hydrogels from enantiomeric amino acid derivatives: helical nanofibers, handedness and self-sorting. Soft Matter 7, 8913–8922 (2011).

    Article  CAS  Google Scholar 

  21. Molla, M. R., Das, A. & Ghosh, S. Self-sorted assembly in a mixture of donor and acceptor chromophores. Chem. Eur. J. 16, 10084–10093 (2010).

    Article  CAS  Google Scholar 

  22. Smith, M. M. & Smith, D. K. Self-sorting multi-gelator gels–mixing and ageing effects in thermally addressable supramolecular soft nanomaterials. Soft Matter 7, 4856–4860 (2011).

    Article  CAS  Google Scholar 

  23. Abul-Haija, Y. M. et al. Biocatalytically triggered co-assembly of two-component core/shell nanofibers. Small 10, 973–979 (2014).

    Article  CAS  Google Scholar 

  24. Yu, G., Yan, X., Han, C. & Huang, F. Characterization of supramolecular gels. Chem. Soc. Rev. 42, 6697–6722 (2013).

    Article  CAS  Google Scholar 

  25. Görl, D., Zhang, X., Stepanenko, V. & Würthner, F. Supramolecular block copolymers by kinetically controlled co-self-assembly of planar and core-twisted perylene bisimides. Nature Commun. 6, 7009 (2015).

    Article  Google Scholar 

  26. Draper, E. R., Eden, E. G. B., McDonald, T. O. & Adams, D. J. Spatially resolved multicomponent gels. Nature Chem. 7, 848–852 (2015).

    Article  CAS  Google Scholar 

  27. Morris, K. L. et al. Chemically programmed self-sorting of gelator networks. Nature Commun. 4, 1480 (2013).

    Article  Google Scholar 

  28. Smulders, M. M. J. et al. How to distinguish isodesmic from cooperative supramolecular polymerisation. Chem. Eur. J. 16, 362–367 (2010).

    Article  CAS  Google Scholar 

  29. Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    Article  CAS  Google Scholar 

  30. Aliprandi, A., Mauro, M. & De Cola, L. Controlling and imaging biomimetic self-assembly. Nature Chem. 8, 10–15 (2016).

    Article  CAS  Google Scholar 

  31. Albertazzi, L. et al. Probing exchange pathways in one-dimensional aggregates with super-resolution microscopy. Science 344, 491–495 (2014).

    Article  CAS  Google Scholar 

  32. Baker, M. B. et al. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer. Nature Commun. 6, 6234 (2015).

    Article  Google Scholar 

  33. Liang, Y., Lynn, D. G. & Berland, K. M. Direct observation of nucleation and growth in amyloid self-assembly. J. Am. Chem. Soc. 132, 6306–6308 (2010).

    Article  CAS  Google Scholar 

  34. Ikeda, M. et al. Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel–enzyme hybrids. Nature Chem. 6, 511–518 (2014).

    Article  CAS  Google Scholar 

  35. Komatsu, H. et al. Supramolecular hydrogel exhibiting four basic logic gate functions to fine-tune substance release. J. Am. Chem. Soc. 131, 5580–5585 (2009).

    Article  CAS  Google Scholar 

  36. Komatsu, H., Tsukiji, S., Ikeda, M. & Hamachi, I. Stiff, multistimuli-responsive supramolecular hydrogels as unique molds for 2D/3D microarchitectures of live cells. Chem. Asian J. 6, 2368–2375 (2011).

    Article  CAS  Google Scholar 

  37. Hirst, A. R., Huang, B., Castelletto, V., Hamley, I. W. & Smith, D. K. Self-organisation in the assembly of gels from mixtures of different dendritic peptide building blocks. Chem. Eur. J. 13, 2180–2188 (2007).

    Article  CAS  Google Scholar 

  38. Kiyonaka, S., Sugiyasu, K., Shinkai, S. & Hamachi, I. First thermally responsive supramolecular polymer based on glycosylated amino acid. J. Am. Chem. Soc. 124, 10954–10955 (2002).

    Article  CAS  Google Scholar 

  39. Ikeda, M., Tanida, T., Yoshii, T. & Hamachi, I. Rational molecular design of stimulus-responsive supramolecular hydrogels based on dipeptides. Adv. Mater. 23, 2819–2822 (2011).

    Article  CAS  Google Scholar 

  40. Kiyonaka, S. et al. Semi-wet peptide/protein array using supramolecular hydrogel. Nature Mater. 3, 58–64 (2004).

    Article  CAS  Google Scholar 

  41. Comeau, J. W. D., Costantino, S. & Wiseman, P. W. A guide to accurate fluorescence microscopy colocalization measurements. Biophys. J. 91, 4611–4622 (2006).

    Article  CAS  Google Scholar 

  42. Dunn, K. W., Kamocka, M. M. & McDonald, J. H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 300, C723–C742 (2011).

    Article  CAS  Google Scholar 

  43. Adler, J. & Parmryd, I. Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander's overlap coefficient. Cytom. Part A 77A, 733–742 (2010).

    Article  Google Scholar 

  44. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  Google Scholar 

  45. Tamaru, S.-i. et al. Fluidic supramolecular nano- and microfibres as molecular rails for regulated movement of nanosubstances. Nature Commun. 1, 20 (2010).

    Article  Google Scholar 

  46. Thompson, N. L., Burghardt, T. P. & Axelrod, D. Measuring surface dynamics of biomolecules by total internal reflection fluorescence with photobleaching recovery or correlation spectroscopy. Biophys. J. 33, 435–454 (1981).

    Article  CAS  Google Scholar 

  47. Jayaraman, K. et al. Observing capillarity in hydrophobic silica nanotubes. J. Am. Chem. Soc. 127, 17385–17392 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Matsuda, M. Suginome and Y. Nagata (Kyoto University) for CD spectra measurements, U. Schwarz (Leica Microsystems) for STED microscopy, Y. Sato (Carl Zeiss Microimaging Co.) for making 3D CLSM images and T. Hirose (Kyoto University) for support with TEM. The authors acknowledge financial support from the CREST (Core Research for Evolutionary Science and Technology) programme of JST (the Japan Science and Technology Agency).

Author information

Authors and Affiliations

Authors

Contributions

M.I. and I.H. conceived the project. S.O. and T.T. synthesized and characterized the compounds. S.O. and H.S. measured and analysed the CD spectra. S.O., H.S. and T.Y. obtained the TEM, CLSM and STED images. H.S. conducted FRAP experiments. S.O. and H.S. performed in situ real-time imaging of fibre formation and degradation. The manuscript was written by S.O., H.S., R.K. and I.H. and edited by all co-authors.

Corresponding author

Correspondence to Itaru Hamachi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8435 kb)

Supplementary information

Supplementary movie 1 (AVI 3005 kb)

Supplementary information

Supplementary movie 2 (AVI 3416 kb)

Supplementary information

Supplementary movie 3 (AVI 4968 kb)

Supplementary information

Supplementary movie 4 (AVI 1771 kb)

Supplementary information

Supplementary movie 5 (AVI 1455 kb)

Supplementary information

Supplementary movie 6 (AVI 5305 kb)

Supplementary information

Supplementary movie 7 (AVI 3481 kb)

Supplementary information

SSupplementary movie 8 (AVI 1575 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Onogi, S., Shigemitsu, H., Yoshii, T. et al. In situ real-time imaging of self-sorted supramolecular nanofibres. Nature Chem 8, 743–752 (2016). https://doi.org/10.1038/nchem.2526

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2526

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing