Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Organometallic neptunium(III) complexes

Abstract

Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal–ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of mono- and dinuclear bis(arene)-bound Np(III) LAr complexes 1 and 2 from the spontaneous reduction of the NpIV starting material.
Figure 2: Molecular structures of the three organometallic NpIII complexes.
Figure 3: Reduction of 1 to form 3a.
Figure 4: Ratio between the imaginary part of the a.c. magnetic susceptibility and the static (d.c.) susceptibility measured for [(LAr)NpCl] (1) as a function of temperature and for different frequencies.
Figure 5: MO diagrams for 1c-MI (M = Sm, U, Np).

Similar content being viewed by others

References

  1. Nash, K., Madic, C., Mathur, J. N. & Lacquement, J. in The Chemistry of the Actinide and Transactinide Elements Vol. 5 (eds Katz, J. J. et al.) Ch. 25, 2799–2910 (Springer, 2010).

    Google Scholar 

  2. LaPierre, H. S. & Meyer, K. Activation of small molecules by molecular uranium complexes. Progr. Inorg. Chem. 58, 303–416 (2014).

    CAS  Google Scholar 

  3. Liddle, S. T. The renaissance of non-aqueous uranium chemistry. Angew. Chem. Int. Ed. 54, 8604–8641 (2015).

    Article  CAS  Google Scholar 

  4. Arnold, P. L., McMullon, M. W., Rieb, J. & Kuhn, F. E. C–H bond activation by f-block complexes. Angew. Chem. Int. Ed. 54, 82–100 (2015).

    Article  CAS  Google Scholar 

  5. Fischer, E. O., Laubereau, P., Baumgärtner, F. & Kanellakopulos, B. Tricyclopentadienylneptunium-chlorid. J. Organomet. Chem. 5, 583–584 (1966).

    Article  CAS  Google Scholar 

  6. Baumgärtner, F., Fischer, E. O., Kanellakopulos, B. & Laubereau, P. Tetrakis(cyclopentadienyl)neptunium(IV). Angew. Chem. 80, 661–661 (1968).

    Article  Google Scholar 

  7. Bohlander, R. The Organometallic Chemistry of Neptunium (Kernforschungszentrum Karlsruhe GmbH, 1986).

    Google Scholar 

  8. De Ridder, D. J. A., Rebizant, J., Apostolidis, C., Kanellakopulos, B. & Dornberger, E. Bis(cyclooctatetraenyl)neptunium(IV). Acta Cryst. C 52, 597–600 (1996).

    Article  Google Scholar 

  9. Magnani, N. et al. Magnetic memory effect in a transuranic mononuclear complex. Angew. Chem. Int. Ed. 50, 1696–1698 (2011).

    Article  CAS  Google Scholar 

  10. Eisenberg, D. C., Streitwieser, A. & Kot, W. K. Electron transfer in organouranium and transuranium systems. Inorg. Chem. 29, 10–14 (1990).

    Article  CAS  Google Scholar 

  11. Burns, C. & Eisen, M. in The Chemistry of the Actinide and Transactinide Elements Vol. 5 (eds Katz, J. J. et al.) Ch. 25, 2799–2910 (Springer, 2010).

    Book  Google Scholar 

  12. Arnold, P. L., Mansell, S. M., Maron, L. & McKay, D. Spontaneous reduction and C–H borylation of arenes mediated by uranium(III) disproportionation. Nature Chem. 4, 668–674 (2012).

    Article  CAS  Google Scholar 

  13. La Pierre, H. S., Scheurer, A., Heinemann, F. W., Hieringer, W. & Meyer, K. Synthesis and characterization of a uranium(II) monoarene complex supported by δ backbonding. Angew. Chem. Int. Ed. 53, 7158–7162 (2014).

    Article  CAS  Google Scholar 

  14. Hong, G., Schautz, F. & Dolg, M. Ab initio study of metal−ring bonding in the bis(η6-benzene)lanthanide and -actinide complexes M(C6H6)2 (M = La, Ce, Nd, Gd, Tb, Lu, Th, U). J. Am. Chem. Soc. 121, 1502–1512 (1999).

    Article  CAS  Google Scholar 

  15. Sessler, J. L., Cho, W.-S., Lynch, V. & Král, V. Missing-link macrocycles: hybrid heterocalixarene analogues formed from several different building blocks. Chem. Eur. J. 8, 1134–1143 (2002).

    Article  CAS  Google Scholar 

  16. Arnold, P. L. et al. Switchable π-coordination and C–H metallation in small-cavity macrocyclic uranium and thorium complexes. Chem. Sci. 5, 756–765 (2014).

    Article  CAS  Google Scholar 

  17. Avens, L. R. et al. A convenient entry into trivalent actinide chemistry: synthesis and characterization of AnI3(THF)4 and An[N(SiMe3)2]3 (An = U, Np, Pu). Inorg. Chem. 33, 2248–2256 (1994).

    Article  CAS  Google Scholar 

  18. Arnold, P. L. et al. Synthesis of bimetallic uranium and neptunium complexes of a binucleating macrocycle and determination of the solid-state structure by magnetic analysis. Inorg. Chem. 49, 5341–5343 (2010).

    Article  CAS  Google Scholar 

  19. Bursten, B. E., Rhodes, L. F. & Strittmatter, R. J. The bonding in tris(η5-cyclopentadienyl)actinide complexes. IV: electronic structural effects in AnCl3 and (η5-C5H5)3An (An = thorium–californium) complexes. J. Less-Common Met. 149, 207–211 (1989).

    Article  Google Scholar 

  20. Ilango, S., Vidjayacoumar, B. & Gambarotta, S. Samarium complexes of a σ-/π-pyrrolide/arene based macrocyclic ligand. Dalton Trans. 39, 6853–6857 (2010).

    Article  CAS  Google Scholar 

  21. Arnold, P. L., Farnaby, J. H., Gardiner, M. G. & Love, J. B. Uranium(III) coordination chemistry and oxidation in a flexible small-cavity macrocycle. Organometallics 34, 2114–2117 (2015).

    Article  CAS  Google Scholar 

  22. Shannon, R. D. Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976).

    Article  Google Scholar 

  23. Minasian, S. G. et al. Synthesis and structure of (Ph4P)2MCl6 (M = Ti, Zr, Hf, Th, U, Np, Pu). Inorg. Chem. 51, 5728–5736 (2012).

    Article  CAS  Google Scholar 

  24. Bagnall, K. W., Payne, G. F., Alcock, N. W., Flanders, D. J. & Brown, D. Actinide structural studies. Part 8. Some new oxygen-donor complexes of trichloro(cyclopentadienyl)neptunium(IV); the crystal structure of trichloro(η5-cyclopentadienyl)bis(methyldiphenylphosphine oxide)neptunium(IV). Dalton Trans. 783–787 (1986).

  25. Langeslay, R. R., Fieser, M. E., Ziller, J. W., Furche, F. & Evans, W. J. Synthesis, structure, and reactivity of crystalline molecular complexes of the {[C5H3(SiMe3)2]3Th}1– anion containing thorium in the formal +2 oxidation state. Chem. Sci. 6, 517–521 (2015).

    Article  CAS  Google Scholar 

  26. MacDonald, M. R. et al. Identification of the +2 oxidation state for uranium in a crystalline molecular complex, [K(2.2.2-cryptand)][(C5H4SiMe3)3U]. J. Am. Chem. Soc. 135, 13310–13313 (2013).

    Article  CAS  Google Scholar 

  27. Blake, P. C., Lappert, M. F., Atwood, J. L. & Zhang, H. The synthesis and characterisation, including X-ray diffraction study, of [Th{η-C5H3(SiMe3)2}3]; the first thorium(III) crystal structure. Chem. Comm. 1148–1149 (1986).

  28. De Ridder, D. J. A., Apostolidis, C., Rebizant, J., Kanellakopulos, B. & Maier, R. Tris(η5-cyclopentadienyl)phenolatoneptunium(IV). Acta Cryst. C 52, 1436–1438 (1996).

    Article  Google Scholar 

  29. Arnold, P. L. et al. Strongly coupled binuclear uranium–oxo complexes from uranyl oxo rearrangement and reductive silylation. Nature Chem. 4, 221–227 (2012).

    Article  CAS  Google Scholar 

  30. Meihaus, K. R. & Long, J. R. Actinide-based single-molecule magnets. Dalton Trans. 44, 2517–2528 (2015).

    Article  CAS  Google Scholar 

  31. Rinehart, J. D. & Long, J. R. Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chem. Sci. 2, 2078–2085 (2011).

    Article  CAS  Google Scholar 

  32. Moro, F., Mills, D. P., Liddle, S. T. & van Slageren, J. The inherent single-molecule magnet character of trivalent uranium. Angew. Chem. Int. Ed. 52, 3430–3433 (2013).

    Article  CAS  Google Scholar 

  33. Kaltsoyannis, N. & Scott, P. The f Elements (Oxford Univ. Press, 1999).

    Google Scholar 

  34. Prodan, I. D., Scuseria, G. E. & Martin, R. L. Covalency in the actinide dioxides: systematic study of the electronic properties using screened hybrid density functional theory. Phys. Rev. B 76, 033101 (2007).

    Article  Google Scholar 

  35. Kirker, I. & Kaltsoyannis, N. Does covalency really increase across the 5f series? A comparison of molecular orbital, natural population, spin and electron density analyses of AnCp3 (An = Th–Cm; Cp = η5-C5H5). Dalton Trans. 40, 124–131 (2011).

    Article  CAS  Google Scholar 

  36. Neidig, M. L., Clark, D. L. & Martin, R. L. Covalency in f-element complexes. Coord. Chem. Rev. 257, 394–406 (2013).

    Article  CAS  Google Scholar 

  37. Huang, Q.-R., Kingham, J. R. & Kaltsoyannis, N. The strength of actinide-element bonds from the quantum theory of atoms-in-molecules. Dalton Trans. 44, 2554–2566 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Experiments were supported by the European FP7 TALISMAN project, under contract with the European Commission, the JRC ITU USERLAB programme, the University of Edinburgh, European Cooperation in Science and Technology action CM1006 and the Engineering and Physical Sciences Research Council EP/H004823/1 and EP/M010554/1. M.S.D. acknowledges the European Commission for support in the frame of the Training and Mobility of Researchers programme. We thank G. Nichol for help with the X-ray crystallography, A. Morgenstern for help with data collection and the Organometallic Chemistry Laboratory, CENT, University of Warsaw, for additional data collection. N.K. thanks the UCL High Performance Computing Facility (Legion@UCL), the University of Manchester's computational shared facility and associated support staff and services.

Author information

Authors and Affiliations

Authors

Contributions

M.S.D. synthesized and purified the compounds and collected and analysed synthetic data; J.H.F. provided ligand samples and analysed synthetic data; C.A. collected and analysed synthetic data; E.C. collected and analysed magnetic data; O.W. collected and analysed crystallographic data; N.M. analysed magnetic data; M.G.G. provided ligand samples; J.B.L. designed the study, analysed the data and wrote the manuscript; N.K. designed the computational study, carried out and analysed the calculations and wrote the manuscript; R.C. designed the study, analysed the data and wrote the manuscript; P.L.A. designed the study, analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Polly L. Arnold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1751 kb)

Supplementary information

Crystallographic data for compound 1. (CIF 1408 kb)

Supplementary information

Crystallographic data for compound 2. (CIF 665 kb)

Supplementary information

Crystallographic data for compound 3. (CIF 280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutkiewicz, M., Farnaby, J., Apostolidis, C. et al. Organometallic neptunium(III) complexes. Nature Chem 8, 797–802 (2016). https://doi.org/10.1038/nchem.2520

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2520

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing