Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework

Abstract

One- and two-dimensional carbon nanomaterials are attracting considerable attention because of their extraordinary electrical, mechanical and thermal properties, which could lead to a range of important potential applications. Synthetic processes associated with making these materials can be quite complex and also consume large amounts of energy, so a major challenge is to develop simple and efficient methods to produce them. Here, we present a self-templated, catalyst-free strategy for the synthesis of one-dimensional carbon nanorods by morphology-preserved thermal transformation of rod-shaped metal–organic frameworks. The as-synthesized non-hollow (solid) carbon nanorods can be transformed into two- to six-layered graphene nanoribbons through sonochemical treatment followed by chemical activation. The performance of these metal–organic framework-derived carbon nanorods and graphene nanoribbons in supercapacitor electrodes demonstrates that this synthetic approach can produce functionally useful materials. Moreover, this approach is readily scalable and could be used to produce carbon nanorods and graphene nanoribbons on industrial levels.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Synthesis and characterization of MOF and carbon nanostructures.
Figure 2: Morphological evolution of MOF-74-Rod, carbon nanorods and graphene nanoribbons.
Figure 3: Applications of graphene nanoribbons and carbon nanorods for electrochemical energy storage.

References

  1. 1

    Novoselov, K. S. et al.. A roadmap for graphene. Nature 490, 192–200 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Dai, H. Carbon nanotubes, from synthesis to integration and properties. Acc. Chem. Res. 35, 1035–1044 (2002).

    CAS  Article  Google Scholar 

  3. 3

    Zhu, Y. et al.. Carbon-based supercapacitors produced by activation of graphene. Science 332, 1537–1541 (2011).

    CAS  Article  Google Scholar 

  4. 4

    De Jong, K. P. & Geus, J. W. Carbon nanofibers: catalytic synthesis and applications. Catal. Rev. Sci. Eng. 42, 481–510 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Gadipelli, S. & Guo, Z. X. Graphene-based materials: synthesis and gas sorption, storage and separation. Prog. Mater. Sci. 69, 1–60 (2015).

    CAS  Article  Google Scholar 

  6. 6

    Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Salunkhe, R. R. et al.. Asymmetric supercapacitors using 3D nanoporous carbon and cobalt oxide electrodes synthesized from a single metal–organic framework. ACS Nano 9, 6288–6296 (2015).

    CAS  Article  Google Scholar 

  8. 8

    Yang, S., Bachman, R. E., Feng, X. & Müllen, K. Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion. Acc. Chem. Res. 46, 116–128 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Kumar, M. & Ando, Y. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10, 3739–3758 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Kosynkin, D. V. et al.. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458, 872–876 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Shinde, D. B., Debgupta, J., Kushwaha, A., Aslam, M. & Pillai, V. K. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons. J. Am. Chem. Soc. 133, 4168–4171 (2011).

    CAS  Article  Google Scholar 

  12. 12

    Ma, L., Wang, J. & Ding, F. Recent progress and challenges in graphene nanoribbon synthesis. ChemPhysChem 14, 47–54 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Terrones, M. et al.. Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nano Today 5, 351–372 (2010).

    Article  Google Scholar 

  14. 14

    Dutta, S. & Pati, S. K. Novel properties of graphene nanoribbons: a review. J. Mater. Chem. 20, 8207–8223 (2010).

    CAS  Article  Google Scholar 

  15. 15

    Eddaoudi, M. et al.. Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal−organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Slater, A. G. & Cooper, A. I. Function-led design of new porous materials. Science 348, aaa8075 (2015).

    Article  Google Scholar 

  17. 17

    Yang, S. et al.. Selectivity and direct visualisation of carbon dioxide and sulphur dioxide in a decorated porous host. Nature Chem. 4, 887–894 (2012).

    CAS  Article  Google Scholar 

  18. 18

    Liu, B., Shioyama, H., Akita, T. & Xu, Q. Metal−organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130, 5390–5391 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Tang, J. et al.. Thermal conversion of core–shell metal−organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 137, 1572–1580 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Hao, G. P. et al. Unusual ultra-hydrophilic, porous carbon cuboids for atmospheric-water capture. Angew. Chem. Int. Ed. 54, 1941–1945 (2015).

    CAS  Article  Google Scholar 

  21. 21

    Das, R., Pachfule, P., Banerjee, R. & Poddar, P. Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides. Nanoscale 4, 591–599 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Xia, W., Mahmood, A., Zou, R. & Xu, Q. Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837–1866 (2015).

    CAS  Article  Google Scholar 

  23. 23

    Sun, J.-K. & Xu, Q. Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ. Sci. 7, 2071–2100 (2014).

    CAS  Article  Google Scholar 

  24. 24

    Luo, J., Jang, H. D. & Huang, J. Effect of sheet morphology on the scalability of graphene-based ultracapacitors. ACS Nano. 7, 1464–1471 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Salunkhe, R. R. et al.. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J. Mater. Chem. A 2, 19848–19854 (2014).

    CAS  Article  Google Scholar 

  26. 26

    Xu, X., Cao, R., Jeong, S. & Cho, J. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett. 12, 4988–4991 (2012).

    CAS  Article  Google Scholar 

  27. 27

    Pachfule, P., Biswal, B. P. & Banerjee, R. Control of porosity by using isoreticular zeolitic imidazolate frameworks (IRZIFs) as a template for porous carbon synthesis. Chem. Eur. J. 18, 11399–11408 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Rowsell, J. L. C. & Yaghi, O. M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal−organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Ma, J. L., Wong-Foy, A. G. & Matzger, A. J. The role of modulators in controlling layer spacings in a tritopic linker based zirconium 2D microporous coordination polymer. Inorg. Chem. 54, 4591–4593 (2015).

    CAS  Article  Google Scholar 

  30. 30

    McGuire, C. V. & Forgan, R. S. The surface chemistry of metal–organic frameworks. Chem. Commun. 51, 5199–5217 (2015).

    CAS  Article  Google Scholar 

  31. 31

    Li, P. et al.. Synthesis of nanocrystals of Zr-based metal–organic frameworks with csq-net: significant enhancement in the degradation of a nerve agent simulant. Chem. Commun. 51, 10925–10928 (2015).

    CAS  Article  Google Scholar 

  32. 32

    Yu, D., Yazaydin, A. O., Lane, J. R., Dietzel, P. D. C. & Snurr, R. Q. A combined experimental and quantum chemical study of CO2 adsorption in the metal−organic framework CPO-27 with different metals. Chem. Sci. 4, 3544–3556 (2013).

    CAS  Article  Google Scholar 

  33. 33

    Tranchemontagne, D. J., Hunt, J. R. & Yaghi, O. M. Room temperature synthesis of metal–organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 64, 8553–8557 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Yue, Y. et al.. Template-free synthesis of hierarchical porous metal–organic frameworks. J. Am. Chem. Soc. 135, 9572–9575 (2013).

    CAS  Article  Google Scholar 

  35. 35

    Coleman, J. N. Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 19, 3680–3695 (2009).

    CAS  Article  Google Scholar 

  36. 36

    Jiao, L., Wang, X., Diankov, G., Wang, H. & Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nature Nanotech. 5, 321–325 (2010).

    CAS  Article  Google Scholar 

  37. 37

    Xu, H. & Suslick, K. S. Sonochemical preparation of functionalized graphenes. J. Am. Chem. Soc. 133, 9148–9151 (2011).

    CAS  Article  Google Scholar 

  38. 38

    Wang, I. & Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710–23725 (2012).

    CAS  Article  Google Scholar 

  39. 39

    Lyon, L. A. Raman spectroscopy. Anal. Chem. 70, 341R–361R (1998).

    CAS  Article  Google Scholar 

  40. 40

    Jiao, L., Zhang, L., Wang, X., Diankov, G. & Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature 458, 877–880 (2009).

    CAS  Article  Google Scholar 

  41. 41

    Zhang, Z., Sun, Z., Yao, J., Kosynkin, D. V. & Tour, J. M. Transforming carbon nanotube devices into nanoribbon devices. J. Am. Chem. Soc. 131, 13460–13463 (2009).

    CAS  Article  Google Scholar 

  42. 42

    Rouquerol, F., Rouquerol, J. & Sing, K. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications (Academic, 1999).

    Google Scholar 

  43. 43

    Lowell, S., Shields, J. E., Thomas, M. A. & Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density (Kluwer, 2004).

    Google Scholar 

  44. 44

    Rosnes, M. H. et al. Intriguing differences in hydrogen adsorption in CPO-27 materials induced by metal substitution. J. Mater. Chem. A 3, 4827–4839 (2015).

    CAS  Article  Google Scholar 

  45. 45

    Zhang, W., Wu, Z.-Y., Jiang, H.-L. & Yu, S.-H. Nanowire-directed templating synthesis of metal–organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 136, 14385–14388 (2014).

    CAS  Article  Google Scholar 

  46. 46

    Chen, L. et al. One-step solid-state thermolysis of a metal–organic framework: a simple and facile route to large-scale of multiwalled carbon nanotubes. Chem. Commun. 1581–1583 (2008).

  47. 47

    Li, J.-S. Nitrogen-doped Fe/Fe3C@graphitic layer/carbon nanotube hybrids derived from MOFs: efficient bifunctional electrocatalysts for ORR and OER. Chem. Commun. 51, 2710–2713 (2015).

    CAS  Article  Google Scholar 

  48. 48

    Wang, G., Zhang, L. & Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012).

    CAS  Article  Google Scholar 

  49. 49

    Gu, W. & Yushin, G. Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. WIREs Energy Environ. 3, 424–473 (2014).

    CAS  Article  Google Scholar 

  50. 50

    Miller, J. R., Outlaw, R. A. & Holloway, B. C. Graphene double-layer capacitor with ac line-filtering performance. Science 329, 1637–1639 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for comments and suggestions, T. Uchida (AIST) and S.K. Soni (RMIT) for microscopic measurements, and Japan Society for the Promotion of Science (JSPS) for financial support (KAKENHI no. 26289379). D.S. and M.M. thank the Australian Research Council for partial support through an ARC Discovery grant (DP 110100082).

Author information

Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper. P.P. and Q.X. conceived the research project. P.P. conducted the experiments and performed the characterizations. D.S. and M.M. recorded the AFM images and performed the conductivity experiments. P.P. and Q.X. wrote the manuscript with the input from the other authors.

Corresponding author

Correspondence to Qiang Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2188 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pachfule, P., Shinde, D., Majumder, M. et al. Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nature Chem 8, 718–724 (2016). https://doi.org/10.1038/nchem.2515

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing