Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fast response dry-type artificial molecular muscles with [c2]daisy chains

Abstract

Hierarchically organized myosin and actin filaments found in biological systems exhibit contraction and expansion behaviours that produce work and force by consuming chemical energy. Inspired by these naturally occurring examples, we have developed photoresponsive wet- and dry-type molecular actuators built from rotaxane-based compounds known as [c2]daisy chains (specifically, [c2]AzoCD2 hydrogel and [c2]AzoCD2 xerogel). These actuators were prepared via polycondensation between four-armed poly(ethylene glycol) and a [c2]daisy chain based on α-cyclodextrin as the host component and azobenzene as a photoresponsive guest component. The light-induced actuation arises from the sliding motion of the [c2]daisy chain unit. Ultraviolet irradiation caused the gels to bend towards the light source. The response of the [c2]AzoCD2 xerogel, even under dry conditions, is very fast (7° every second), which is 10,800 times faster than the [c2]AzoCD2 hydrogel (7° every 3 h). In addition, the [c2]AzoCD2 xerogel was used as a crane arm to lift an object using ultraviolet irradiation to produce mechanical work.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structure of polymeric gels with the photoresponsive property in this study.
Figure 2: Schematic illustration of the preparation of the [c2]daisy chain ([c2]DMTAzoCD2) as a model compound and as a hydrogel.
Figure 3: Photoresponsive properties of the [c2]AzoCD2 hydrogel and the azo hydrogel.
Figure 4: Photoresponsive hydrogel actuators in water.
Figure 5: Photoresponsive xerogel actuators under dry conditions.

Similar content being viewed by others

References

  1. Alberts, B. et al. Molecular Biology of the Cell 5th edn (Garland Science, 2008).

    Google Scholar 

  2. Yin, H. et al. Transcription against an applied force. Science 270, 1653–1657 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science 279, 519–526 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Vale, R. D. & Milligan, R. A. The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Schill, G. Catenanes, Rotaxanes, and Knots (Academic, 1971).

    Google Scholar 

  6. Dietrich-Buchecker, C. O. & Sauvage, J. P. Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands. Chem. Rev. 87, 795–810 (1987).

    Article  CAS  Google Scholar 

  7. Amabilino, D. B. & Stoddart, J. F. Interlocked and intertwined structures and superstructures. Chem. Rev. 95, 2725–2828 (1995).

    Article  CAS  Google Scholar 

  8. Niess, F. et al. Molecular muscles: from species in solution to materials and devices. Chem. Lett. 43, 964–974 (2014).

    Article  CAS  Google Scholar 

  9. Ashton, P. R. et al. Supramolecular daisy chains. Angew. Chem. Int. Ed. 37, 1294–1297 (1998).

    Article  CAS  Google Scholar 

  10. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  11. Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Rotzler, J. & Mayor, M. Molecular daisy chains. Chem. Soc. Rev. 42, 44–62 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Bruns, C. J. & Stoddart, J. F. Rotaxane-based molecular muscles. Acc. Chem. Res. 47, 2186–2199 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kudernac, T., Katsonis, N., Browne, W. R. & Feringa, B. L. Nano-electronic switches: light-induced switching of the conductance of molecular systems. J. Mater. Chem. 19, 7168–7177 (2009).

    Article  CAS  Google Scholar 

  16. Jiménez, M. C., Dietrich-Buchecker, C. & Sauvage, J.-P. Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew. Chem. Int. Ed. 39, 3284–3287 (2000).

    Article  Google Scholar 

  17. Jimenez-Molero, M. C., Dietrich-Buchecker, C. & Sauvage, J.-P. Chemically induced contraction and stretching of a linear rotaxane dimer. Chem. Eur. J. 8, 1456–1466 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Jimenez-Molero, M. C., Dietrich-Buchecker, C. & Sauvage, J.-P. Towards artificial muscles at the nanometric level. Chem. Commun. 1613–1616 (2003).

  19. Collin, J.-P., Dietrich-Buchecker, C., Gaviña, P., Jimenez-Molero, M. C. & Sauvage, J.-P. Shuttles and muscles: linear molecular machines based on transition metals. Acc. Chem. Res. 34, 477–487 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Tsukagoshi, S., Miyawaki, A., Takashima, Y., Yamaguchi, H. & Harada, A. Contraction of supramolecular double-threaded dimer formed by α-cyclodextrin with a long alkyl chain. Org. Lett. 9, 1053–1055 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, Z., Han, C., Yu, G. & Huang, F. A. A solvent-driven molecular spring. Chem. Sci. 3, 3026–3031 (2012).

    Article  CAS  Google Scholar 

  22. Wu, J. et al. An acid–base-controllable [c2]daisy chain. Angew. Chem. Int. Ed. 47, 7470–7474 (2008).

    Article  CAS  Google Scholar 

  23. Coutrot, F., Romuald, C. & Busseron, E. A. New pH-switchable dimannosyl[c2]daisy chain molecular machine. Org. Lett. 10, 3741–3744 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Romuald, C., Busseron, E. & Coutrot, F. Very contracted to extended co-conformations with or without oscillations in two- and three-station [c2]daisy chains. J. Org. Chem. 75, 6516–6531 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Bruns, C. J. et al. An electrochemically and thermally switchable donor–acceptor [c2]daisy chain rotaxane. Angew. Chem. Int. Ed. 53, 1953–1958 (2014).

    Article  CAS  Google Scholar 

  26. Bruns, C. J. et al. Redox switchable daisy chain rotaxanes driven by radical–radical interactions. J. Am. Chem. Soc. 136, 4714–4723 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Tsuda, S., Aso, Y. & Kaneda, T. Linear oligomers composed of a photochromically contractible and extendable Janus [2]rotaxane. Chem. Commun. 3072–3074 (2006).

  28. Dawson, R. E., Lincoln, S. F. & Easton, C. J. The foundation of a light driven molecular muscle based on stilbene and α-cyclodextrin. Chem. Commun. 3980–3982 (2008).

  29. Yamauchi, K., Takashima, Y., Hashidzume, A., Yamaguchi, H. & Harada, A. Switching between supramolecular dimer and nonthreaded supramolecular self-assembly of stilbene amide-α-cyclodextrin by photoirradiation. J. Am. Chem. Soc. 130, 5024–5025 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Li, S., Taura, D., Hashidzume, A. & Harada, A. Light-switchable janus [2]rotaxanes based on α-cyclodextrin derivatives bearing two recognition sites linked with oligo(ethylene glycol). Chem. Asian J. 5, 2281–2289 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Liu, Y. et al. Linear artificial molecular muscles. J. Am. Chem. Soc. 127, 9745–9759 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Fang, L. et al. Acid–base actuation of [c2]daisy chains. J. Am. Chem. Soc. 131, 7126–7134 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Hmadeh, M. et al. On the thermodynamic and kinetic investigations of a [c2]daisy chain polymer. J. Mater. Chem. 20, 3422–3430 (2010).

    Article  CAS  Google Scholar 

  34. Bruns, C. J. & Stoddart, J. F. Supramolecular polymers: molecular machines muscle up. Nature Nanotech. 8, 9–10 (2013).

    Article  CAS  Google Scholar 

  35. Clark, P. G., Day, M. W. & Grubbs, R. H. Switching and extension of a [c2]daisy-chain dimer polymer. J. Am. Chem. Soc. 131, 13631–13633 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Du, G., Moulin, E., Jouault, N., Buhler, E. & Giuseppone, N. Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. Angew. Chem. Int. Ed. 51, 12504–12508 (2012).

    Article  CAS  Google Scholar 

  37. Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nature Nanotech. 10, 161–165 (2009).

    Article  CAS  Google Scholar 

  38. Tamesue, S., Takashima, Y., Yamaguchi, H., Shinkai, S. & Harada, A. Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew. Chem. Int. Ed. 49, 7461–7464 (2010).

    Article  CAS  Google Scholar 

  39. Takashima, Y. et al. Expansion–contraction of photoresponsive artificial muscle regulated by host–guest interactions. Nature Commun. 3, 1270 (2012).

    Article  CAS  Google Scholar 

  40. Nakahata, M., Takashima, Y., Hashidzume, A. & Harada, A. Redox-generated mechanical motion of a supramolecular polymeric actuator based on host–guest interactions. Angew. Chem. Int. Ed. 52, 5731–5735 (2013).

    Article  CAS  Google Scholar 

  41. Osada, Y., Okuzaki, H. & Hori, H. A polymer gel with electrically driven motility. Nature 355, 242–244 (1992).

    Article  CAS  Google Scholar 

  42. Beebe, D. J. et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature 404, 588–590 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P. & Aizenberg, J. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 315, 487–490 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Ikeda, T. & Tsutsumi, O. Optical switching and image storage by means of azobenzene liquid-crystal films. Science 268, 1873–1875 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Ikeda, T., Mamiya, J.-i. & Yu, Y. Photomechanics of liquid-crystalline elastomers and other polymers. Angew. Chem. Int. Ed. 46, 506–528 (2007).

    Article  CAS  Google Scholar 

  46. Yamada, M. et al. Photomobile polymer materials: towards light-driven plastic motors. Angew. Chem. Int. Ed. 47, 4986–4988 (2008).

    Article  CAS  Google Scholar 

  47. Hugel, T. et al. Single-molecule optomechanical cycle. Science 296, 1103–1106 (2002).

    Article  PubMed  Google Scholar 

  48. Yu, Y., Nakano, M. & Ikeda, T. Photomechanics: directed bending of a polymer film by light. Nature 425, 145 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Camacho-Lopez, M., Finkelmann, H., Palffy-Muhoray, P. & Shelley, M. Fast liquid-crystal elastomer swims into the dark. Nature Mater. 3, 307–310 (2004).

    Article  CAS  Google Scholar 

  50. Van Oosten, C. L., Bastiaansen, C. W. M. & Broer, D. J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nature Mater. 8, 677–682 (2009).

    Article  CAS  Google Scholar 

  51. Iamsaard, S. et al. Conversion of light into macroscopic helical motion. Nature Chem. 6, 229–235 (2014).

    Article  CAS  Google Scholar 

  52. Lu, W. et al. Use of ionic liquids for π-conjugated polymer electrochemical devices. Science 297, 983–987 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Baughman, R. H. et al. Carbon nanotube actuators. Science 284, 1340–1344 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Kim, P. & Lieber, C. M. Nanotube nanotweezers. Science 286, 2148–2150 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the ImPACT Program of the Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), a Grant-in-Aid for Scientific Research on Innovative Areas of ‘Fusion Materials: Creative Development of Materials and Exploration of Their Function through Molecular Control’ (no. 2206), a Grant-in-Aid for Scientific Research (B) (no. 26288062) from MEXT of Japan and a Research Grant Program of the Asahi Glass Foundation. The authors thank N. Inazumi (Osaka University) for advice regarding the field gradient magic angle spinning NMR spectral measurements.

Author information

Authors and Affiliations

Authors

Contributions

A.H. and Y.T. conceived and directed the study. K.I. performed syntheses and spectroscopic studies. All authors contributed to characterizations and discussion. A.H. and Y.T. co-wrote the paper. A.H. oversaw the project and contributed to the execution of the experiments and interpretation of the results.

Corresponding author

Correspondence to Akira Harada.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4323 kb)

Supplementary information

Supplementary movie 1 (MP4 1553 kb)

Supplementary information

Supplementary movie 2 (MP4 2594 kb)

Supplementary information

Supplementary movie 3 (MP4 5272 kb)

Supplementary information

Supplementary movie 4 (MP4 2004 kb)

Supplementary information

Supplementary movie 5 (MP4 6688 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iwaso, K., Takashima, Y. & Harada, A. Fast response dry-type artificial molecular muscles with [c2]daisy chains. Nature Chem 8, 625–632 (2016). https://doi.org/10.1038/nchem.2513

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2513

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing