Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry

Abstract

Functionalization of atomically thin nanomaterials enables the tailoring of their chemical, optical and electronic properties. Exfoliated black phosphorus (BP)—a layered two-dimensional semiconductor—exhibits favourable charge-carrier mobility, tunable bandgap and highly anisotropic properties, but it is chemically reactive and degrades rapidly in ambient conditions. Here we show that covalent aryl diazonium functionalization suppresses the chemical degradation of exfoliated BP even after three weeks of ambient exposure. This chemical modification scheme spontaneously forms phosphorus–carbon bonds, has a reaction rate sensitive to the aryl diazonium substituent and alters the electronic properties of exfoliated BP, ultimately yielding a strong, tunable p-type doping that simultaneously improves the field-effect transistor mobility and on/off current ratio. This chemical functionalization pathway controllably modifies the properties of exfoliated BP, and thus improves its prospects for nanoelectronic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aryl diazonium functionalization of BP.
Figure 2: Spectroscopic characterization of BP with increasing 10 mM aryl diazonium functionalization.
Figure 3: Chemical passivation of BP.
Figure 4: Effect of covalent functionalization on charge transport in exfoliated BP FETs.

Similar content being viewed by others

References

  1. Morita, A. Semiconducting black phosphorus. Appl. Phys. A 39, 227–242 (1986).

    Google Scholar 

  2. Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

    Google Scholar 

  3. Ling, X., Wang, H., Huang, S., Xia, F. & Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl Acad. Sci. USA 112, 4523–4530 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kou, L., Chen, C. & Smith, S. C. Phosphorene: fabrication, properties, and applications. J. Phys. Chem. Lett. 6, 2794–2805 (2015).

    CAS  PubMed  Google Scholar 

  5. Das, S. et al. Tunable transport gap in phosphorene. Nano Lett. 14, 5733–5739 (2014).

    CAS  PubMed  Google Scholar 

  6. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    CAS  PubMed  Google Scholar 

  7. Li, L. et al. Black phosphorus field-effect transistors. Nature Nanotech. 9, 372–377 (2014).

    CAS  Google Scholar 

  8. Wang, H. et al. Black phosphorus radio-frequency transistors. Nano Lett. 14, 6424–6429 (2014).

    CAS  PubMed  Google Scholar 

  9. Koenig, S. P., Doganov, R. A., Schmidt, H., Neto, A. C. & Oezyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014).

    Google Scholar 

  10. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    CAS  Google Scholar 

  11. Jariwala, D., Sangwan, V. K., Lauhon, L. J., Marks, T. J. & Hersam, M. C. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8, 1102–1120 (2014).

    CAS  PubMed  Google Scholar 

  12. Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Commun. 5, 4458 (2014).

    CAS  Google Scholar 

  13. Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014).

    CAS  PubMed  Google Scholar 

  14. Low, T., Engel, M., Steiner, M. & Avouris, P. Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B 90, 081408 (2014).

    Google Scholar 

  15. Sun, J. et al. Formation of stable phosphorus–carbon bond for enhanced performance in black phosphorus nanoparticle–graphite composite battery anodes. Nano Lett. 14, 4573–4580 (2014).

    CAS  PubMed  Google Scholar 

  16. Kou, L., Frauenheim, T. & Chen, C. Phosphorene as a superior gas sensor: selective adsorption and distinct I–V response. J. Phys. Chem. Lett. 5, 2675–2681 (2014).

    CAS  PubMed  Google Scholar 

  17. Wood, J. D. et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14, 6964–6970 (2014).

    CAS  PubMed  Google Scholar 

  18. Favron, A. et al. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nature Mater. 14, 826–832 (2015).

    CAS  Google Scholar 

  19. Goldwhite, H. Introduction to Phosphorus Chemistry (Cambridge Univ. Press, 1981).

    Google Scholar 

  20. Dreyer, D. R., Park, S., Bielawski, C. W. & Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010).

    CAS  PubMed  Google Scholar 

  21. Johns, J. E. et al. Metal oxide nanoparticle growth on graphene via chemical activation with atomic oxygen. J. Am. Chem. Soc. 135, 18121–18125 (2013).

    CAS  PubMed  Google Scholar 

  22. Loh, K. P., Bao, Q., Eda, G. & Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nature Chem. 2, 1015–1024 (2010).

    CAS  Google Scholar 

  23. Johns, J. E. & Hersam, M. C. Atomic covalent functionalization of graphene. Accounts Chem. Res. 46, 77–86 (2012).

    Google Scholar 

  24. Voiry, D. et al. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nature Chem. 45– 49 (2014).

    Google Scholar 

  25. Delamar, M., Hitmi, R., Pinson, J. & Saveant, J. M. Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. J. Am. Chem. Soc. 114, 5883–5884 (1992).

    CAS  Google Scholar 

  26. Kariuki, J. K. & McDermott, M. T. Nucleation and growth of functionalized aryl films on graphite electrodes. Langmuir 15, 6534–6540 (1999).

    CAS  Google Scholar 

  27. Piao, Y. et al. Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nature Chem. 5, 840–845 (2013).

    CAS  Google Scholar 

  28. Niyogi, S. et al. Spectroscopy of covalently functionalized graphene. Nano Lett. 10, 4061–4066 (2010).

    CAS  PubMed  Google Scholar 

  29. Englert, J. M. et al. Covalent bulk functionalization of graphene. Nature Chem. 3, 279–286 (2011).

    CAS  Google Scholar 

  30. Bahr, J. L. et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J. Am. Chem. Soc. 123, 6536–6542 (2001).

    CAS  PubMed  Google Scholar 

  31. Wang, Q. H. et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nature Chem. 4, 724–732 (2012).

    CAS  Google Scholar 

  32. Bekyarova, E. et al. Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J. Am. Chem. Soc. 131, 1336–1337 (2009).

    CAS  PubMed  Google Scholar 

  33. Koehler, F. M., Jacobsen, A., Ensslin, K., Stampfer, C. & Stark, W. J. Selective chemical modification of graphene surfaces: distinction between single- and bilayer graphene. Small 6, 1125–1130 (2010).

    CAS  PubMed  Google Scholar 

  34. Pelavin, M., Hendrickson, D., Hollander, J. & Jolly, W. Phosphorus 2p electron binding energies. Correlation with extended Hueckel charges. J. Phys. Chem. 74, 1116–1121 (1970).

    CAS  Google Scholar 

  35. Blackburn, J. R., Nordberg, R., Stevie, F., Albridge, R. G. & Jones, M. M. Photoelectron spectroscopy of coordination compounds. Triphenylphosphine and its complexes. Inorg. Chem. 9, 2374–2376 (1970).

    CAS  Google Scholar 

  36. Sugai, S. & Shirotani, I. Raman and infrared reflection spectroscopy in black phosphorus. Solid State Commun. 53, 753–755 (1985).

    CAS  Google Scholar 

  37. Zhang, S. et al. Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. ACS Nano 8, 9590–9596 (2014).

    CAS  PubMed  Google Scholar 

  38. Allongue, P. et al. Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts. J. Am. Chem. Soc. 119, 201–207 (1997).

    CAS  Google Scholar 

  39. Paulus, G. L., Wang, Q. H. & Strano, M. S. Covalent electron transfer chemistry of graphene with diazonium salts. Acc. Chem. Res. 46, 160–170 (2012).

    PubMed  Google Scholar 

  40. Hansch, C., Leo, A. & Taft, R. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).

    CAS  Google Scholar 

  41. Elofson, R. M. & Gadallah, F. Substituent effects in the polarography of aromatic diazonium salts. J. Org. Chem. 34, 854–857 (1969).

    CAS  Google Scholar 

  42. Farmer, D. B. et al. Chemical doping and electron−hole conduction asymmetry in graphene devices. Nano Lett. 9, 388–392 (2008).

    Google Scholar 

  43. Coletti, C. et al. Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Phys. Rev. B 81, 235401 (2010).

    Google Scholar 

  44. Sinitskii, A. et al. Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4, 1949–1954 (2010).

    CAS  PubMed  Google Scholar 

  45. Xiang, D. et al. Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus. Nature Commun. 6, 6485 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge useful discussions with J. Kang and X. Liu. This research was supported by the Office of Naval Research (N00014-14-1-0669), the Materials Research Science and Engineering Center (MRSEC) of Northwestern University (NSF DMR-1121262), the National Institute of Standards and Technology (NIST CHiMaD 70NANB14H012) and the Department of Energy (DE-FG02-09ER16109). The work made use of the NUANCE Center, which has received support from the MRSEC (NSF DMR-1121262), State of Illinois and Northwestern University. Raman spectroscopy measurements were conducted at Argonne National Laboratory's Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility, under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

C.R.R. conceived the experiments with the assistance of J.D.W. and S.A.W., executed the aryl diazonium chemistry, performed the AFM and Raman spectroscopy measurements and analysis, and prepared the manuscript. J.D.W. performed XPS measurements and analysis and contributed to the analysis of AFM and Raman spectroscopy data. S.A.W. fabricated BP FETs and analysed the device data. Y.Y. conducted DFT calculations and their analysis with the guidance of G.C.S. D.J. assisted with BP FET measurements and analysis. T.J.M. and M.C.H. oversaw the development and execution of the research. All the authors contributed to the revision of the manuscript.

Corresponding author

Correspondence to Mark C. Hersam.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 7067 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryder, C., Wood, J., Wells, S. et al. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nature Chem 8, 597–602 (2016). https://doi.org/10.1038/nchem.2505

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2505

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing