Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A motif for reversible nitric oxide interactions in metalloenzymes

Abstract

Nitric oxide (NO) participates in numerous biological processes, such as signalling in the respiratory system and vasodilation in the cardiovascular system. Many metal-mediated processes involve direct reaction of NO to form a metal–nitrosyl (M–NO), as occurs at the Fe2+ centres of soluble guanylate cyclase or cytochrome c oxidase. However, some copper electron-transfer proteins that bear a type 1 Cu site (His2Cu–Cys) reversibly bind NO by an unknown motif. Here, we use model complexes of type 1 Cu sites based on tris(pyrazolyl)borate copper thiolates [CuII]-SR to unravel the factors involved in NO reactivity. Addition of NO provides the fully characterized S-nitrosothiol adduct [CuI](κ1-N(O)SR), which reversibly loses NO on purging with an inert gas. Computational analysis outlines a low-barrier pathway for the capture and release of NO. These findings suggest a new motif for reversible binding of NO at bioinorganic metal centres that can interconvert NO and RSNO molecular signals at copper sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T1Cu electron-transfer site and synthetic model complexes.
Figure 2: Capture of NO by iPr2TpCu-SCPh3 (1a) to form unstable S-nitrosothiol adduct 1b.
Figure 3: Synthesis of MesTpCu(κ1-N(O)SCPh3) (2b) and MesTpCu-SCPh3 (1b).
Figure 4: X-ray crystal structures of MesTpCu-SCPh3 (1b) and MesTpCu(κ1-N(O)SCPh3) (2b).
Figure 5: Orbital interactions and pathway for reversible capture of NO by MesTpCu-SCPh3 (2b).
Figure 6: Interconnections between NO and S-nitrosothiols promoted by copper.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Ignarro, L. J. Nitric Oxide, Biology and Pathobiology 2nd edn (Academic, 2010).

    Google Scholar 

  2. Cary, S. P. L., Winger, J. A., Derbyshire, E. R. & Marletta, M. A. Nitric oxide signaling: no longer simply on or off. Trends Biochem. Sci. 31, 231–239 (2006).

    Article  CAS  Google Scholar 

  3. Francis, S. H., Busch, J. L. & Corbin, J. D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol. Rev. 62, 525–563 (2010).

    Article  CAS  Google Scholar 

  4. Hematian, S. et al. Nitrogen oxide atom-transfer redox chemistry; mechanism of NO(g) to nitrite conversion utilizing μ-oxo heme-FeIII–O–CuII(L) constructs. J. Am. Chem. Soc. 137, 6602–6615 (2015).

    Article  CAS  Google Scholar 

  5. Mason, M. G., Nicholls, P., Wilson, M. T. & Cooper, C. E. Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc. Natl Acad. Sci. USA 103, 708–713 (2006).

    Article  CAS  Google Scholar 

  6. Brown, G. C. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 369, 136–139 (1995).

    Article  CAS  Google Scholar 

  7. Ohta, K. et al. X-ray structure of the NO-bound CuB in bovine cytochrome c oxidase. Acta Crystallogr. F 66, 251–253 (2010).

    Article  CAS  Google Scholar 

  8. Tocheva, E. I., Rosell, F. I., Mauk, A. G. & Murphy, M. E. P. Side-on copper nitrosyl coordination by nitrite reductase. Science 304, 867–870 (2004).

    Article  CAS  Google Scholar 

  9. Merkle, A. C. & Lehnert, N. Binding and activation of nitrite and nitric oxide by copper nitrite reductase and corresponding model complexes. Dalton Trans. 41, 3355–3368 (2012).

    Article  CAS  Google Scholar 

  10. Usov, O. M., Sun, Y., Grigoryants, V. M., Shapleigh, J. P. & Scholes, C. P. EPR–ENDOR of the Cu(I)NO complex of nitrite reductase. J. Am. Chem. Soc. 128, 13102–13111 (2006).

    Article  CAS  Google Scholar 

  11. Fujisawa, K. et al. Structural and spectroscopic characterization of mononuclear copper(I) nitrosyl complexes: end-on versus side-on coordination of NO to copper(I). J. Am. Chem. Soc. 130, 1205–1213 (2008).

    Article  CAS  Google Scholar 

  12. Wever, R., Van Leeuwen, F. X. R. & Van Gelder, B. F. The reaction of nitric oxide with ceruloplasmin. Biochim. Biophys. Acta 302, 236–239 (1973).

    Article  CAS  Google Scholar 

  13. Gorren, A. C. F., De Boer, E. & Wever, R. The reaction of nitric oxide with copper proteins and the photodissociation of copper–nitric oxide complexes. Biochim. Biophys. Acta 916, 38–47 (1987).

    Article  CAS  Google Scholar 

  14. Van Leeuwen, F. X. R., Wever, R., Van Gelder, B. F., Avigliano, L. & Mondovi, B. The interaction of nitric oxide with ascorbate oxidase. Biochim. Biophys. Acta 403, 285–291 (1975).

    Article  CAS  Google Scholar 

  15. Ehrenstein, D., Filiaci, M., Scharf, B., Engelhard, M. & Nienhaus, G. U. Ligand binding and protein dynamics in cupredoxins. Biochemistry 34, 12170–12177 (1995).

    Article  CAS  Google Scholar 

  16. Solomon, E. I. et al. Copper active sites in biology. Chem. Rev. 114, 3659–3853 (2014).

    Article  CAS  Google Scholar 

  17. Liu, J. et al. Metalloproteins containing cytochrome, iron–sulfur, or copper redox centers. Chem. Rev. 114, 4366–4469 (2014).

    Article  CAS  Google Scholar 

  18. Solomon, E. I., Szilagyi, R. K., DeBeer George, S. & Basumallick, L. Electronic structures of metal sites in proteins and models: contributions to function in blue copper proteins. Chem. Rev. 104, 419–458 (2004).

    Article  CAS  Google Scholar 

  19. Inoue, K. et al. Nitrosothiol formation catalyzed by ceruloplasmin. J. Biol. Chem. 274, 27069–27075 (1999).

    Article  CAS  Google Scholar 

  20. Shiva, S. et al. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nature Chem. Biol. 2, 486–493 (2006).

    Article  CAS  Google Scholar 

  21. Rassaf, T. et al. Plasma nitrosothiols contribute to the systemic vasodilator effects of intravenously applied NO. Experimental and clinical study on the fate of NO in human blood. Circ. Res. 91, 470–477 (2002).

    Article  CAS  Google Scholar 

  22. Stamler, J. S. & Toone, E. J. The decomposition of thionitrites. Curr. Opin. Chem. Biol. 6, 779–785 (2002).

    Article  CAS  Google Scholar 

  23. Zhang, S., Çelebi-Ölçüm, N., Melzer, M. M., Houk, K. N. & Warren, T. H. Copper(I) nitrosyls from reaction of copper(II) thiolates with S-nitrosothiols: mechanism of NO release from RSNOs at Cu. J. Am. Chem. Soc. 135, 16746–16749 (2013).

    Article  CAS  Google Scholar 

  24. Hess, D. T., Matsumoto, A., Kim, S.-O., Marshall, H. E. & Stamler, J. S. Protein S-nitrosylation: purview and parameters. Nature Rev. Mol. Cell Biol. 6, 150–166 (2005).

    Article  CAS  Google Scholar 

  25. Foster, M. W., Hess, D. T. & Stamler, J. S. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol. Med. 15, 391–404 (2009).

    Article  CAS  Google Scholar 

  26. Kim, S. F., Huri, D. A. & Snyder, S. H. Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310, 1966–1970 (2005).

    Article  CAS  Google Scholar 

  27. Johnson, M. A., Macdonald, T. L., Mannick, J. B., Conaway, M. R. & Gaston, B. Accelerated S-nitrosothiol breakdown by amyotrophic lateral sclerosis mutant copper, zinc-superoxide dismutase. J. Biol. Chem. 276, 39872–39878 (2001).

    Article  CAS  Google Scholar 

  28. Schonhoff, C. M. et al. S-nitrosothiol depletion in amyotrophic lateral sclerosis. Proc. Natl Acad. Sci. USA 103, 2404–2409 (2006).

    Article  CAS  Google Scholar 

  29. Romeo, A. A., Filosa, A., Capobianco, J. A. & English, A. M. Metal chelators inhibit S-nitrosation of Cysβ93 in oxyhemoglobin. J. Am. Chem. Soc. 123, 1782–1783 (2001).

    Article  CAS  Google Scholar 

  30. Pawloski, J. R., Hess, D. T. & Stamler, J. S. Export by red blood cells of nitric oxide bioactivity. Nature 409, 622–626 (2001).

    Article  CAS  Google Scholar 

  31. McMahon, T. J. et al. A nitric oxide processing defect of red blood cells created by hypoxia: deficiency of S-nitrosohemoglobin in pulmonary hypertension. Proc. Natl Acad. Sci. USA 102, 14801–14806 (2005).

    Article  CAS  Google Scholar 

  32. Ford, P. C. & Lorkovic, I. M. Mechanistic aspects of the reactions of nitric oxide with transition-metal complexes. Chem. Rev. 102, 993–1018 (2002).

    Article  CAS  Google Scholar 

  33. McCleverty, J. A. Chemistry of nitric oxide relevant to biology. Chem. Rev. 104, 403–418 (2004).

    Article  CAS  Google Scholar 

  34. Ford, P. C., Fernandez, B. O. & Lim, M. D. Mechanisms of reductive nitrosylation in iron and copper models relevant to biological systems. Chem. Rev. 105, 2439–2455 (2005).

    Article  CAS  Google Scholar 

  35. Kitajima, N., Fujisawa, K., Tanaka, M. & Morooka, Y. X-ray structure of thiolatocopper(II) complexes bearing close spectroscopic similarities to blue copper proteins. J. Am. Chem. Soc. 114, 9232–9233 (1992).

    Article  CAS  Google Scholar 

  36. Qiu, D., Kilpatrick, L., Kitajima, N. & Spiro, T. G. Modeling blue copper protein resonance Raman spectra with thiolate–CuII complexes of a sterically hindered tris(pyrazolyl)borate. J. Am. Chem. Soc. 116, 2585–2590 (1994).

    Article  CAS  Google Scholar 

  37. Randall, D. W. et al. Spectroscopic and electronic structural studies of blue copper model complexes. Part 1. Perturbation of the thiolate–Cu bond. J. Am. Chem. Soc. 122, 11620–11631 (2000).

    Article  CAS  Google Scholar 

  38. Arulsamy, N. et al. Interrelationships between conformational dynamics and the redox chemistry of S-nitrosothiols. J. Am. Chem. Soc. 121, 7115–7123 (1999).

    Article  CAS  Google Scholar 

  39. Fujisawa, K. et al. Structural and electronic differences of copper(I) complexes with tris(pyrazolyl)methane and hydrotris(pyrazolyl)borate ligands. Inorg. Chem. 45, 1698–1713 (2006).

    Article  CAS  Google Scholar 

  40. Rheingold, A. L., White, C. B. & Trofimenko, S. Hydrotris(3-mesitylpyrazol-1-yl)borate and hydrobis(3-mesitylpyrazol-1-yl)(5-mesitylpyrazol-1-yl)borate: symmetric and asymmetric ligands with rotationally restricted aryl substituents. Inorg. Chem. 32, 3471–3477 (1993).

    Article  CAS  Google Scholar 

  41. Schneider, J. L., Carrier, S. M., Ruggiero, C. E., Young, V. G. & Tolman, W. B. Influences of ligand environment on the spectroscopic properties and disproportionation reactivity of copper–nitrosyl complexes. J. Am. Chem. Soc. 120, 11408–11418 (1998).

    Article  CAS  Google Scholar 

  42. Perissinotti, L. L., Estrin, D. A., Leitus, G. & Doctorovich, F. A surprisingly stable S-nitrosothiol complex. J. Am. Chem. Soc. 128, 2512–2513 (2006).

    Article  CAS  Google Scholar 

  43. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  44. Frisch, M. J. Gaussian 09, Revision D.01 (Gaussian, 2009).

  45. Baciu, C., Cho, K.-B. & Gauld, J. W. Influence of Cu+ on the RS–NO bond dissociation energy of S-nitrosothiols. J. Phys. Chem. B 109, 1334–1336 (2005).

    Article  CAS  Google Scholar 

  46. Wright, A. M., Wu, G. & Hayton, T. W. Structural characterization of a copper nitrosyl complex with a {CuNO}10 configuration. J. Am. Chem. Soc. 132, 14336–14337 (2010).

    Article  CAS  Google Scholar 

  47. Williams, D. L. H. The chemistry of S-nitrosothiols. Acc. Chem. Res. 32, 869–876 (1999).

    Article  CAS  Google Scholar 

  48. Schwane, J. D. & Ashby, M. T. FTIR investigation of the intermediates formed in the reaction of nitroprusside and thiolates. J. Am. Chem. Soc. 124, 6822–6823 (2002).

    Article  CAS  Google Scholar 

  49. Perissinotti, L. L., Turjanski, A. G., Estrin, D. A. & Doctorovich, F. Transnitrosation of nitrosothiols: characterization of an elusive intermediate. J. Am. Chem. Soc. 127, 486–487 (2005).

    Article  CAS  Google Scholar 

  50. Melzer, M. M., Li, E. & Warren, T. H. Reversible RS–NO bond cleavage and formation at copper(I) thiolates. Chem. Commun. 5847–5849 (2009).

Download references

Acknowledgements

This material is based on work supported by the US National Science Foundation (award no. CHE-1459090, to T.H.W.). The authors thank the Purdue University Department of Chemistry and the Vorisek Endowment at Georgetown University for additional financial support (to T.H.W.), as well as the TUBITAK ULAKBIM High Performance and Grid Computing Center (TRUBA, Turkey) for computer time (N.Ç.-O.).

Author information

Authors and Affiliations

Authors

Contributions

S.Z., N.Ç.-Ö. and T.H.W. conceived and designed the research. S.Z., M.M.M., S.N.S. and N.Ç.-Ö. collected data and performed calculations. S.Z., M.M.M., S.N.S., N.Ç.-Ö. and T.H.W. analysed the data. S.Z., N.Ç.-Ö. and T.H.W. co-wrote the paper.

Corresponding authors

Correspondence to Nihan Çelebi-Ölçüm or Timothy H. Warren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5913 kb)

Supplementary information

Crystallographic data for compound MesTpCu-SCPh3 (1b) (CIF 1080 kb)

Supplementary information

Crystallographic data for compound MesTpCu(κ1-N(O)SCPh3) (2b) (CIF 1541 kb)

Supplementary information

Crystallographic data for compound iPr2TpCuI(CNAr2,6-Me2) (3a) (CIF 1461 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Melzer, M., Sen, S. et al. A motif for reversible nitric oxide interactions in metalloenzymes. Nature Chem 8, 663–669 (2016). https://doi.org/10.1038/nchem.2502

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2502

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing