Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions


Understanding the kinetics and energetics of interfacial electron transfer in molecular systems is crucial for the development of a broad array of technologies, including photovoltaics, solar fuel systems and energy storage. The Marcus formulation for electron transfer relates the thermodynamic driving force and reorganization energy for charge transfer between a given donor/acceptor pair to the kinetics and yield of electron transfer. Here we investigated the influence of the thermodynamic driving force for photoinduced electron transfer (PET) between single-walled carbon nanotubes (SWCNTs) and fullerene derivatives by employing time-resolved microwave conductivity as a sensitive probe of interfacial exciton dissociation. For the first time, we observed the Marcus inverted region (in which driving force exceeds reorganization energy) and quantified the reorganization energy for PET for a model SWCNT/acceptor system. The small reorganization energies (about 130 meV, most of which probably arises from the fullerene acceptors) are beneficial in minimizing energy loss in photoconversion schemes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Probing SWCNT exciton dissociation as a function of thermodynamic driving force using TRMC.
Figure 2: TRMC photoconductance transients at I0FA = 2 × 1012 cm−2 for the SWCNT bilayers (with C60 and C60(CF3)4) and neat films ((7,5) SWCNTs and LV SWCNTs).
Figure 3: Yield-mobility product versus absorbed flux.
Figure 4: Relative yield versus ΔGPET for (7,5) and LV bilayers with fullerene derivatives.


  1. 1

    Bindl, D. J., Wu, M.-Y., Prehn, F. C. & Arnold, M. S. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett. 11, 455–460 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Umeyama, T. et al. Carbon nanotube wiring of donor–acceptor nanograins by self-assembly and efficient charge transport. Angew. Chem. Int. Ed. 50, 4615–4619 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Umeyama, T. et al. Selective formation and efficient photocurrent generation of [70]fullerene–single-walled carbon nanotube composites. Advanced Mater. 22, 1767–1770 (2010).

    CAS  Article  Google Scholar 

  4. 4

    Arnold, M. S. et al. Recent developments in the photophysics of single-walled carbon nanotubes for their use as active and passive material elements in thin film photovoltaics. Phys. Chem. Chem. Phys. 15, 14896–14918 (2013).

    CAS  Article  Google Scholar 

  5. 5

    Guillot, S. L. et al. Precision printing and optical modeling of ultrathin SWCNT/C60 heterojunction solar cells. Nanoscale 7, 6556–6566 (2015).

    CAS  Article  Google Scholar 

  6. 6

    Shea, M. J. & Arnold, M. S. 1% solar cells derived from ultrathin carbon nanotube photoabsorbing films. Appl. Phys. Lett. 102, 243101 (2013).

    Article  Google Scholar 

  7. 7

    Dowgiallo, A.-M., Mistry, K. S., Johnson, J. C. & Blackburn, J. L. Ultrafast spectroscopic signature of charge transfer between single-walled carbon nanotubes and C60 . ACS Nano 8, 8573–8581 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Bindl, D. J. et al. Free carrier generation and recombination in polymer-wrapped semiconducting carbon nanotube films and heterojunctions. J. Phys. Chem. Lett. 4, 3550–3559 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Marcus, R. A. Chemical and electrochemical electron-transfer theory. Annu. Rev. Phys. Chem. 15, 155–196 (1964).

    CAS  Article  Google Scholar 

  10. 10

    Marcus, R. A. On the theory of oxidation-reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966 (1956).

    CAS  Article  Google Scholar 

  11. 11

    Closs, G. L. & Miller, J. R. Intramolecular long-distance electron transfer in organic molecules. Science 240, 440–447 (1988).

    CAS  Article  Google Scholar 

  12. 12

    Coffey, D. C. et al. An optimal driving force for converting excitons into free carriers in excitonic solar cells. J. Phys. Chem. C 116, 8916–8923 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Hilmer, A. J., Tvrdy, K., Zhang, J. & Strano, M. S. Charge transfer structure–reactivity dependence of fullerene-single-walled carbon nanotube heterojunctions. J. Am. Chem. Soc. 135, 11901–11910 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Miller, J. R., Calcaterra, L. T. & Closs, G. L. Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates. J. Am. Chem. Soc. 106, 3047–3049 (1984).

    CAS  Article  Google Scholar 

  15. 15

    Tvrdy, K., Frantsuzov, P. A. & Kamat, P. V. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles. Proc. Natl Acad. Sci. 108, 29–34 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Ai, X., Anderson, N. A., Guo, J. & Lian, T. Electron injection dynamics of Ru polypyridyl complexes on SnO2 nanocrystalline thin films. J. Phys. Chem. B 109, 7088–7094 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Popov, A. A. et al. Electrochemical, spectroscopic, and DFT study of C60(CF3)n frontier orbitals (n = 2–18): the link between double bonds in pentagons and reduction potentials. J. Am. Chem. Soc. 129, 11551–11568 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Ferguson, A. J. et al. Trap-limited carrier recombination in single-walled carbon nanotube heterojunctions with fullerene acceptor layers. Phys. Rev. B 91, 245311 (2015).

    Article  Google Scholar 

  19. 19

    Mistry, K. S., Larsen, B. A. & Blackburn, J. L. High-yield dispersions of large-diameter semiconducting single-walled carbon nanotubes with tunable narrow chirality distributions. ACS Nano 7, 2231–2239 (2013).

    CAS  Article  Google Scholar 

  20. 20

    Nish, A., Hwang, J.-Y., Doig, J. & Nicholas, R. J. Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. Nature Nanotech. 2, 640–646 (2007).

    CAS  Article  Google Scholar 

  21. 21

    Holt, J. M. et al. Prolonging charge separation in P3HT:SWNT composites using highly enriched semiconducting nanotubes. Nano Lett. 10, 4627–4633 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Ferguson, A. J. et al. Photoinduced energy and charge transfer in P3HT:SWNT composites. J. Phys. Chem. Lett. 1, 2406–2411 (2010).

    CAS  Article  Google Scholar 

  23. 23

    Ferguson, A. J., Blackburn, J. L. & Kopidakis, N. Fullerenes and carbon nanotubes as acceptor materials in organic photovoltaics. Mater. Lett. 90, 115–125 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Ferguson, A. J., Kopidakis, N., Shaheen, S. E. & Rumbles, G. Dark carriers, trapping, and activation control of carrier recombination in neat P3HT and P3HT:PCBM blends. J. Phys. Chem. C 115, 23134–23148 (2011).

    CAS  Article  Google Scholar 

  25. 25

    Capaz, R. B., Spataru, C. D., Ismail-Beigi, S. & Louie, S. G. Excitons in carbon nanotubes: diameter and chirality trends. Phys. Status Solidi B 244, 4016–4020 (2007).

    CAS  Article  Google Scholar 

  26. 26

    Dukovic, G. et al. Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes. Nano Lett. 5, 2314–2318 (2005).

    CAS  Article  Google Scholar 

  27. 27

    de Haas, M. P., Warman, J. M., Anthopoulos, T. D. & de Leeuw, D. M. The mobility and decay kinetics of charge carriers in pulse-ionized microcrystalline PCBM powder. Adv. Funct. Mater. 16, 2274–2280 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Yoshikawa, S., Saeki, A., Saito, M., Osaka, I. & Seki, S. On the role of local charge carrier mobility in the charge separation mechanism of organic photovoltaics. Phys. Chem. Chem. Phys. 17, 17778–17784 (2015).

    CAS  Article  Google Scholar 

  29. 29

    Parson, W. W., Chu, Z. T. & Warshel, A. Reorganization energy of the initial electron-transfer step in photosynthetic bacterial reaction centers. Biophys. J. 74, 182–191 (1998).

    CAS  Article  Google Scholar 

  30. 30

    Kawashima, Y., Ohkubo, K. & Fukuzumi, S. Small reorganization energies of photoinduced electron transfer between spherical fullerenes. J. Phys. Chem. A 117, 6737–6743 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Vehmanen, V., Tkachenko, N. V., Imahori, H., Fukuzumi, S. & Lemmetyinen, H. Charge-transfer emission of compact porphyrin–fullerene dyad analyzed by Marcus theory of electron-transfer. Spectrochim. Acta A 57, 2229–2244 (2001).

    CAS  Article  Google Scholar 

  32. 32

    Imahori, H. et al. An extremely small reorganization energy of electron transfer in porphyrin−fullerene dyad. J. Phys. Chem. A 105, 1750–1756 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Guldi, D. M., Rahman, G. M. A., Sgobba, V. & Ehli, C. Multifunctional molecular carbon materials—from fullerenes to carbon nanotubes. Chem. Soc. Rev. 35, 471–487 (2006).

    CAS  Article  Google Scholar 

  34. 34

    Niklas, J. et al. Charge separation in P3HT:SWCNT blends studied by EPR: spin signature of the photoinduced charged state in SWCNT. J. Phys. Chem. Lett. 5, 601–606 (2014).

    CAS  Article  Google Scholar 

  35. 35

    Gruhn, N. E. et al. The vibrational reorganization energy in pentacene: molecular influences on charge transport. J. Am. Chem. Soc. 124, 7918–7919 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Bromley, S. T., Illas, F. & Mas-Torrent, M. Dependence of charge transfer reorganization energy on carrier localisation in organic molecular crystals. Phys. Chem. Chem. Phys. 10, 121–127 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Gao, J. & Loi, M. A. Photophysics of polymer-wrapped single-walled carbon nanotubes. Eur. Phys. J. B 75, 121–126 (2010).

    CAS  Article  Google Scholar 

  38. 38

    Dicker, G., de Haas, M. P., Siebbeles, L. D. A. & Warman, J. M. Electrodeless time-resolved microwave conductivity study of charge-carrier photogeneration in regioregular poly(3-hexylthiophene) thin films. Phys. Rev. B 70, 045203 (2004).

    Article  Google Scholar 

Download references


We especially thank N. Kopidakis and R. Larsen for helpful discussions. R.I., K.S.M., A.J.F, G.R. and J.L.B. were funded by the Solar Photochemistry Program, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy (Grant DE-AC3608GO28308). T.T.C., B.W.L., O.V.B. and S.H.S. acknowledge funding from the National Science Foundation (Grants CHE-1012468 and CHE-1362302).

Author information




G.R., J.L.B. and A.J.F. conceived and designed the experiments. R.I. and K.S.M. prepared the bilayer samples and performed the experiments. T.T.C. and B.W.L. synthesized, purified and characterized the fullerene acceptors. A.J.F. and O.R. developed the kinetic analysis and facilitated the data fitting of the TRMC transients and Marcus curves. R.I., K.S.M., A.J.F. and J.L.B. wrote the paper. G.R., J.L.B., O.V.B. and S.H.S. supervised the overall project. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jeffrey L. Blackburn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4748 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ihly, R., Mistry, K., Ferguson, A. et al. Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions. Nature Chem 8, 603–609 (2016). https://doi.org/10.1038/nchem.2496

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing