Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental realization of two-dimensional boron sheets

Abstract

A variety of two-dimensional materials have been reported in recent years, yet single-element systems such as graphene and black phosphorus have remained rare. Boron analogues have been predicted, as boron atoms possess a short covalent radius and the flexibility to adopt sp2 hybridization, features that favour the formation of two-dimensional allotropes, and one example of such a borophene material has been reported recently. Here, we present a parallel experimental work showing that two-dimensional boron sheets can be grown epitaxially on a Ag(111) substrate. Two types of boron sheet, a β12 sheet and a χ3 sheet, both exhibiting a triangular lattice but with different arrangements of periodic holes, are observed by scanning tunnelling microscopy. Density functional theory simulations agree well with experiments, and indicate that both sheets are planar without obvious vertical undulations. The boron sheets are quite inert to oxidization and interact only weakly with their substrate. We envisage that such boron sheets may find applications in electronic devices in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Formation of 2D boron sheets on Ag(111).
Figure 2: Structure models of S1 and S2 phases of 2D boron sheets based on DFT calculations.
Figure 3: XPS results for 2D boron sheets on Ag(111) after exposure to air.

Similar content being viewed by others

References

  1. Woods, W. G. An introduction to boron: history, sources, uses, and chemistry. Environ. Health Perspect 102, 5–11 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Albert, B. & Hillebrecht, H. Boron: elementary challenge for experimenters and theoreticians. Angew. Chem. Int. Ed. 48, 8640–8668 (2009).

    Article  CAS  Google Scholar 

  3. Ogitsu, T., Schwegler, E. & Galli, G. β-Rhombohedral boron: at the crossroads of the chemistry of boron and the physics of frustration. Chem. Rev. 113, 3425–3449 (2013).

    Article  CAS  Google Scholar 

  4. Fowler, J. E. & Ugalda, J. M. The curiously stable B13+ cluster and its neutral and anionic counterparts: the advantages of planarity. J. Phys. Chem. A 104, 397–403 (2000).

    Article  CAS  Google Scholar 

  5. Zhai, H.-J., Kiran, B., Li, J. & Wang, L.-S. Hydrocarbon analogues of boron clusters—planarity, aromaticity and antiaromaticity. Nature Mater. 2, 827–833 (2003).

    Article  CAS  Google Scholar 

  6. Aihara, J.-I. B13+ is highly aromatic. J. Phys. Chem. A 105, 5486–5489 (2001).

    Article  CAS  Google Scholar 

  7. Huang, W. et al. A concentric planar doubly π-aromatic B19 cluster. Nature Chem. 2, 202–206 (2010).

    Article  Google Scholar 

  8. Popov, I. A. et al. A combined photoelectron spectroscopy and ab initio study of the quasi-planar B24 cluster. J. Chem. Phys. 139, 144307 (2013).

    Article  Google Scholar 

  9. Sergeeva, A. P. et al. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Acc. Chem. Res. 47, 1349–1358 (2014).

    Article  CAS  Google Scholar 

  10. Piazza, Z. A. et al. Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nature Commun. 5, 3313 (2013).

    Google Scholar 

  11. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  12. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  CAS  Google Scholar 

  13. Wang, X. J. et al. Single crystalline boron nanocones: electric transport and field emission properties. Adv. Mater. 19, 4480–4485 (2007).

    Article  CAS  Google Scholar 

  14. Liu, F. et al. Metal-like single crystalline boron nanotubes: synthesis and in situ study on electric transport and field emission properties. J. Mater. Chem. 20, 2197–2205 (2010).

    Article  CAS  Google Scholar 

  15. Zhai, H.-J. et al. Observation of an all-boron fullerene. Nature Chem. 6, 727–731 (2014).

    Article  CAS  Google Scholar 

  16. Tang, H. & Ismail-Beigi, S. Novel precursors for boron nanotubes: the competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99, 115501 (2007).

    Article  Google Scholar 

  17. Tang, H. & Ismail-Beigi, S. Self-doping in boron sheets from first principles: a route to structural design of metal boride nanostructures. Phys. Rev. B 80, 134113 (2009).

    Article  Google Scholar 

  18. Penev, E. S., Bhowmick, S., Sadrzadeh, A. & Yakobson, B. I. Polymorphism of two-dimensional boron. Nano Lett. 12, 2441–2445 (2012).

    Article  CAS  Google Scholar 

  19. Ozdogan, C. et al. The unusually stable B100 fullerene, structural transitions in boron nanostructures, and a comparative study of α- and γ-boron and sheets. J. Phys. Chem. C. 114, 4362–4375 (2010).

    Article  CAS  Google Scholar 

  20. Wu, X. et al. Two-dimensional boron monolayer sheets. ACS Nano 6, 7443–7453 (2012).

    Article  CAS  Google Scholar 

  21. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001).

    Article  CAS  Google Scholar 

  22. Zhou, X.-F. et al. Semimetallic two-dimensional boron allotrope with massless Dirac fermions. Phys. Rev. Lett. 112, 085502 (2014).

    Article  Google Scholar 

  23. Liu, H., Gao, J. & Zhao, J. From boron cluster to two-dimensional boron sheet on Cu(111) surface: growth mechanism and hole formation. Sci. Rep. 3, 3238 (2013).

    Article  Google Scholar 

  24. Liu, Y., Penev, E. S. & Yakobson, B. I. Probing the synthesis of two-dimensional boron by first-principles computations. Angew. Chem. Int. Ed. 52, 3156–3159 (2013).

    Article  CAS  Google Scholar 

  25. Mannix, A. J. et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015).

    Article  CAS  Google Scholar 

  26. Zhang, Z., Yao, Y., Gao, G. & Yakobson, B. I. Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem. Int. Ed. 54, 13022–13026 (2015).

    Article  CAS  Google Scholar 

  27. Moudler, J. F., Stickle, W. F., Sobol, P. E. & Bomben, K. D. Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, 1992).

    Google Scholar 

  28. Ong, C. W. et al. X-ray photoemission spectroscopy of nonmetallic materials: electronic structures of boron and BxOy . J. Appl. Phys. 95, 3527–3534 (2004).

    Article  CAS  Google Scholar 

  29. Xu, S. G., Zhao, Y. J., Liao, J. H. & Yang, X. B. The formation of boron sheet at the Ag(111) surface: From clusters, ribbons, to monolayers. Preprint at http://arxiv.org/abs/1601.01393 (2016).

  30. Liu, Z. et al. Interlayer binding energy of graphite: a mesoscopic determination from deformation. Phys. Rev. B 85, 205418 (2012).

    Article  Google Scholar 

  31. Olsen, T., Yan, J., Mortensen, J. J. & Thygesen, K. S. Dispersive and covalent interactions between graphene and metal surfaces from the random phase approximation. Phys. Rev. Lett. 107, 156401 (2011).

    Article  Google Scholar 

  32. Amsler, M., Botti, S., Marques, M. A. L. & Goedecker, S. Conducting boron sheets formed by the reconstruction of the α-boron (111) surface. Phys. Rev. Lett. 111, 136101 (2013).

    Article  Google Scholar 

  33. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  34. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11185 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Qinlin Guo for useful discussions regarding XPS data analysis. This work was supported by the MOST of China (grant numbers 2012CB921703, 2013CB921702 and 2013CBA01600), the NSF of China (grant numbers 11334011, 11322431, 11174344 and 91121003), and the Strategic Priority Research Program of the Chinese Academy of Sciences (grant number XDB07020100).

Author information

Authors and Affiliations

Authors

Contributions

K.W. and L.C. designed the experiments. B.F., L.C., Q.Z., W.L. and S.L. performed experiments and data analysis (under the supervision of K.W.). J.Z., H.L. and S.M. performed the DFT calculations. B.F., L.C. and K.W. wrote the manuscript, with contributions from all authors. All authors contributed to data analyses and discussions.

Corresponding authors

Correspondence to Hui Li, Lan Chen or Kehui Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2247 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, B., Zhang, J., Zhong, Q. et al. Experimental realization of two-dimensional boron sheets. Nature Chem 8, 563–568 (2016). https://doi.org/10.1038/nchem.2491

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2491

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing