Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unimolecular dissociation dynamics of vibrationally activated CH3CHOO Criegee intermediates to OH radical products

Abstract

The hydroxyl radical is an important atmospheric oxidant, and a significant source of its production occurs through alkene ozonolysis. This takes place via a cycloaddition reaction and subsequent fragmentation to form an energized carbonyl oxide (for example, CH3CHOO), known as a Criegee intermediate, which can then either react with another atmospheric species or decay and, in doing so, produce the hydroxyl radical. Here, we examine the dissociation dynamics of a prototypical Criegee intermediate by characterizing the translational and internal energy distributions of the OH radical products, which reflect critical configurations along the reaction pathway. Experimentally, the kinetic energy release to OH products is ascertained through velocity map imaging. Theoretically, quasi-classical trajectories are performed on a new full-dimensional, ab initio potential energy surface. Both experiment and theory show that most of the available energy flows into internal excitation of the vinoxy products. The isotropic angular distribution of OH fragments indicates that dissociation occurs in ≥2 ps, in agreement with theory.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Reaction schematic showing key features along the pathway from a prototypical Criegee intermediate syn-CH3CHOO to hydroxyl radical (OH) products.
Figure 2: Lifetime for hydroxyl radical (OH) production from velocity map imaging and trajectory calculations for the syn-CH3CHOO Criegee intermediate.
Figure 3: Total kinetic energy release (TKER) to products from experimental and theoretical studies.
Figure 4: Hydroxyl radical (OH) rotational product state distributions from experimental and theoretical studies of the dissociation dynamics of the syn-CH3CHOO Criegee intermediate.
Figure 5: Calculated internal energy distributions of the vinoxy (CH2CHO) products from the dissociation dynamics of the syn-CH3CHOO Criegee intermediate.
Figure 6: Snapshots of a representative trajectory starting from the syn-CH3CHOO transition state to OH+vinoxy (CH2CHO) products.

References

  1. Stone, D., Whalley, L. K. & Heard, D. E. Tropospheric OH and HO2 radicals: field measurements and model comparisons. Chem. Soc. Rev. 41, 6348–6404 (2012).

    CAS  Article  Google Scholar 

  2. Harrison, R. M. et al. Measurement and modelling of air pollution and atmospheric chemistry in the UK West Midlands conurbation: overview of the PUMA Consortium project. Sci. Total Environ. 360, 5–25 (2006).

    CAS  Article  Google Scholar 

  3. Emmerson, K. M. et al. Free radical modelling studies during the UK TORCH campaign in summer 2003. Atmos. Chem. Phys. 7, 167–181 (2007).

    CAS  Article  Google Scholar 

  4. Emmerson, K. M. & Carslaw, N. Night-time radical chemistry during the TORCH campaign. Atmos. Environ. 43, 3220–3226 (2009).

    CAS  Article  Google Scholar 

  5. Johnson, D. & Marston, G. The gas-phase ozonolysis of unsaturated volatile organic compounds in the troposphere. Chem. Soc. Rev. 37, 699–716 (2008).

    CAS  Article  Google Scholar 

  6. Osborn, D. L. & Taatjes, C. A. The physical chemistry of Criegee intermediates in the gas phase. Int. Rev. Phys. Chem. 34, 309–360 (2015).

    CAS  Article  Google Scholar 

  7. Lee, Y. P. Perspective: spectroscopy and kinetics of small gaseous Criegee intermediates. J. Chem. Phys. 143, 020901 (2015).

    Article  Google Scholar 

  8. Chao, W., Hsieh, J. T., Chang, C. H. & Lin, J. J. M. Direct kinetic measurement of the reaction of the simplest Criegee intermediate with water vapor. Science 347, 751–754 (2015).

    CAS  Article  Google Scholar 

  9. Lewis, T. R., Blitz, M. A., Heard, D. E. & Seakins, P. W. Direct evidence for a substantive reaction between the Criegee intermediate, CH2OO, and the water vapour dimer. Phys. Chem. Chem. Phys. 17, 4859–4863 (2015).

    CAS  Article  Google Scholar 

  10. Liu, F., Fang, Y., Kumar, M., Thompson, W. H. & Lester, M. I. Direct observation of vinyl hydroperoxide. Phys. Chem. Chem. Phys. 17, 20490–20494 (2015).

    CAS  Article  Google Scholar 

  11. Orzechowska, G. E. & Paulson, S. E. Production of OH radicals from the reactions of C4–C6 internal alkenes and styrenes with ozone in the gas phase. Atmos. Environ. 36, 571–581 (2002).

    CAS  Article  Google Scholar 

  12. IUPAC. IUPAC Subcommittee on Gas Kinetic Data Evaluation, Data sheet Ox_VOC3_O3 (2005), http://www.iupac-kinetic.ch.cam.ac.uk/datasheets/pdf/Ox_VOC3_O3_alkene.pdf

  13. Paulson, S. E. & Orlando, J. J. The reactions of ozone with alkenes: an important source of HOx in the boundary layer. Geophys. Res. Lett. 23, 3727–3730 (1996).

    CAS  Article  Google Scholar 

  14. Taatjes, C. A. et al. Direct measurements of conformer-dependent reactivity of the Criegee intermediate CH3CHOO. Science 340, 177–180 (2013).

    CAS  Article  Google Scholar 

  15. Liu, F., Beames, J. M., Petit, A. S., McCoy, A. B. & Lester, M. I. Infrared-driven unimolecular reaction of CH3CHOO Criegee intermediates to OH radical products. Science 345, 1596–1598 (2014).

    CAS  Article  Google Scholar 

  16. Beames, J. M., Liu, F., Lu, L. & Lester, M. I. UV spectroscopic characterization of an alkyl substituted Criegee intermediate CH3CHOO. J. Chem. Phys. 138, 244307 (2013).

    Article  Google Scholar 

  17. Beames, J. M., Liu, F., Lester, M. I. & Murray, C. Communication: A new spectroscopic window on hydroxyl radicals using UV + VUV resonant ionization. J. Chem. Phys. 134, 241102 (2011).

    Article  Google Scholar 

  18. Beames, J. M., Liu, F. & Lester, M. I. 1+1′ resonant multiphoton ionisation of OH radicals via the A2Σ+ state: insights from direct comparison with AX laser-induced fluorescence detection. Mol. Phys. 112, 897–903 (2014).

    CAS  Article  Google Scholar 

  19. Kurten, T. & Donahue, N. M. MRCISD studies of the dissociation of vinylhydroperoxide, CH2CHOOH: there is a saddle point. J. Phys. Chem. A 116, 6823–6830 (2012).

    CAS  Article  Google Scholar 

  20. Mordaunt, D. H., Osborn, D. L. & Neumark, D. M. Nonstatistical unimolecular dissociation over a barrier. J. Chem. Phys. 108, 2448–2457 (1998).

    CAS  Article  Google Scholar 

  21. Brouard, M. Reaction Dynamics (Oxford Univ. Press, 1998).

    Google Scholar 

  22. Drozd, G. T., Kroll, J. & Donahue, N. M. 2,3-Dimethyl-2-butene (TME) ozonolysis: pressure dependence of stabilized Criegee intermediates and evidence of stabilized vinyl hydroperoxides. J. Phys. Chem. A 115, 161–166 (2011).

    CAS  Article  Google Scholar 

  23. Liu, F., Beames, J. M. & Lester, M. I. Direct production of OH radicals upon CH overtone activation of (CH3)2COO Criegee intermediates. J. Chem. Phys. 141, 234312 (2014).

    Article  Google Scholar 

  24. Lin, H. Y. et al. Infrared identification of the Criegee intermediates syn- and anti-CH3CHOO, and their distinct conformation-dependent reactivity. Nature Commun. 6, 1–7 (2015).

    Google Scholar 

  25. Adler, T. B., Knizia, G. & Werner, H. J. A simple and efficient CCSD(T)-F12 approximation. J. Chem. Phys. 127, 221106 (2007).

    Article  Google Scholar 

  26. Knizia, G., Adler, T. B. & Werner, H. J. Simplified CCSD(T)-F12 methods: theory and benchmarks. J. Chem. Phys. 130, 054104 (2009).

    Article  Google Scholar 

  27. Braams, B. J. & Bowman, J. M. Permutationally invariant potential energy surfaces in high dimensionality. Int. Rev. Phys. Chem. 28, 577–606 (2009).

    CAS  Article  Google Scholar 

  28. Fang, Y. et al. Communication: real time observation of unimolecular decay of Criegee intermediates to OH radical products. J. Chem. Phys. 144, 061102 (2016).

    Article  Google Scholar 

  29. Lehman, J. H., Li, H., Beames, J. M. & Lester, M. I. Communication: ultraviolet photodissociation dynamics of the simplest Criegee intermediate CH2OO. J. Chem. Phys. 139, 141103 (2013).

    Article  Google Scholar 

  30. Li, H., Fang, Y., Beames, J. M. & Lester, M. I. Velocity map imaging of O-atom products from UV photodissociation of the CH2OO Criegee intermediate. J. Chem. Phys. 142, 214312 (2015).

    Article  Google Scholar 

  31. Li, H., Fang, Y., Kidwell, N. M., Beames, J. M. & Lester, M. I. UV photodissociation dynamics of the CH3CHOO Criegee intermediate: action spectroscopy and velocity map imaging of O-atom products. J. Phys. Chem. A 119, 8328–8337 (2015).

    CAS  Article  Google Scholar 

  32. Nakajima, M. & Endo, Y. Communication: Spectroscopic characterization of an alkyl substituted Criegee intermediate syn-CH3CHOO through pure rotational transitions. J. Chem. Phys. 140, 011101 (2014).

    Article  Google Scholar 

  33. Chang, Y. T., Minichino, C. & Miller, W. H. Classical trajectory studies of the molecular dissociation dynamics of formaldehyde: H2CO→H2+CO. J. Chem. Phys. 96, 4341–4355 (1992).

    CAS  Article  Google Scholar 

  34. Rheinecker, J. L., Zhang, X. & Bowman, J. M. Quasiclassical trajectory studies of the dynamics of H2CO on a global ab initio-based potential energy surface. Mol. Phys. 103, 1067–1074 (2005).

    CAS  Article  Google Scholar 

  35. Kuwata, K. T., Hermes, M. R., Carlson, M. J. & Zogg, C. K. Computational studies of the isomerization and hydration reactions of acetaldehyde oxide and methyl vinyl carbonyl oxide. J. Phys. Chem. A 114, 9192–9204 (2010).

    CAS  Article  Google Scholar 

  36. Donahue, N. M., Drozd, G. T., Epstein, S. A., Presto, A. A. & Kroll, J. H. Adventures in ozoneland: down the rabbit-hole. Phys. Chem. Chem. Phys. 13, 10848–10857 (2011).

    CAS  Article  Google Scholar 

  37. Novelli, A., Vereecken, L., Lelieveld, J. & Harder, H. Direct observation of OH formation from stabilised Criegee intermediates. Phys. Chem. Chem. Phys. 16, 19941–19951 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The experimental research (M.I.L.) was supported by the US Department of Energy, Basic Energy Sciences (DE-FG02-87ER13792). The theoretical research (J.M.B.) was supported by the US Department of Energy, Basic Energy Sciences (DE-FG02-97ER14782). The authors thank F. Liu (University of Pennsylvania) for discussions. J.M.B. and X.W. also thank F. Evangelista (Emory University) for discussions about the active space in CASPT2 calculations.

Author information

Authors and Affiliations

Authors

Contributions

N.M.K., H.L. and X.W. contributed equally to this work. N.M.K. and H.L. performed the experiments and analysed the data. X.W. performed the theoretical calculations and analysed the results. M.I.L. and J.M.B. conceived the experiments and theoretical calculations, respectively, and co-wrote the paper with contributions from other authors. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Joel M. Bowman or Marsha I. Lester.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 940 kb)

Supplementary information

Supplementary Movie 1 (MOV 2772 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kidwell, N., Li, H., Wang, X. et al. Unimolecular dissociation dynamics of vibrationally activated CH3CHOO Criegee intermediates to OH radical products. Nature Chem 8, 509–514 (2016). https://doi.org/10.1038/nchem.2488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2488

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing