Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular rectifier composed of DNA with high rectification ratio enabled by intercalation

Abstract

The predictability, diversity and programmability of DNA make it a leading candidate for the design of functional electronic devices that use single molecules, yet its electron transport properties have not been fully elucidated. This is primarily because of a poor understanding of how the structure of DNA determines its electron transport. Here, we demonstrate a DNA-based molecular rectifier constructed by site-specific intercalation of small molecules (coralyne) into a custom-designed 11-base-pair DNA duplex. Measured current–voltage curves of the DNA–coralyne molecular junction show unexpectedly large rectification with a rectification ratio of about 15 at 1.1 V, a counter-intuitive finding considering the seemingly symmetrical molecular structure of the junction. A non-equilibrium Green's function-based model—parameterized by density functional theory calculations—revealed that the coralyne-induced spatial asymmetry in the electron state distribution caused the observed rectification. This inherent asymmetry leads to changes in the coupling of the molecular HOMO−1 level to the electrodes when an external voltage is applied, resulting in an asymmetric change in transmission.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STMBJ set-up and UV–vis spectroscopy measurements.
Figure 2: Conductance histograms and typical conductance traces of native DNA and DNA–coralyne complex molecular junctions.
Figure 3: IV characteristics of native DNA and DNA–coralyne complex.
Figure 4: Theoretical calculations based on the tight-bonding model.
Figure 5: Transmission function of the DNA–coralyne complex.

Similar content being viewed by others

References

  1. Ratner, M. A brief history of molecular electronics. Nature Nanotech. 8, 378–381 (2013).

    CAS  Google Scholar 

  2. Tao, N. J. Electron transport in molecular junctions. Nature Nanotech. 1, 173–181 (2006).

    CAS  Google Scholar 

  3. Aradhya, S. V. & Venkataraman, L. Single-molecule junctions beyond electronic transport. Nature Nanotech. 8, 399–410 (2013).

    CAS  Google Scholar 

  4. Di Ventra, M. & Pershin, Y. V. Spin physics: DNA spintronics sees the light. Nature Nanotech. 6, 198–199 (2011).

    CAS  Google Scholar 

  5. Genereux, J. C. & Barton, J. K. Molecular electronics: DNA charges ahead. Nature Chem. 1, 106–107 (2009).

    CAS  Google Scholar 

  6. Livshits, G. I. et al. Long-range charge transport in single G-quadruplex DNA molecules. Nature Nanotech. 9, 1040–1046 (2014).

    CAS  Google Scholar 

  7. Dekker, C. & Ratner, M. A. Electronic properties of DNA. Phys. World 14, 29–33 (2001).

    CAS  Google Scholar 

  8. Mallajosyula, S. S. & Pati, S. K. Toward DNA conductivity: a theoretical perspective. J. Phys. Chem. Lett. 1, 1881–1894 (2010).

    CAS  Google Scholar 

  9. Giese, B. et al. Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature 412, 318–320 (2001).

    CAS  PubMed  Google Scholar 

  10. Lewis, F. D. et al. Direct measurement of hole transport dynamics in DNA. Nature 406, 51–53 (2000).

    CAS  PubMed  Google Scholar 

  11. Xiang, L. et al. Intermediate tunnelling–hopping regime in DNA charge transport. Nature Chem. 7, 221–226 (2015).

    CAS  Google Scholar 

  12. Wang, K. et al. Structure determined charge transport in single DNA molecule break junctions. Chem. Sci. 5, 3425–3431 (2014).

    CAS  Google Scholar 

  13. Joshua, H. et al. Effects of cytosine methylation on DNA charge transport. J. Phys. Condens. Matter 24, 164204 (2012).

    Google Scholar 

  14. Tsutsui, M. et al. Electrical detection of single methylcytosines in a DNA oligomer. J. Am. Chem. Soc. 133, 9124–9128 (2011).

    CAS  PubMed  Google Scholar 

  15. Liu, H. et al. Electronic enhancement effect of copper modification of base pairs on the conductivity of DNA. J. Phys. Chem. C 115, 22547–22556 (2011).

    CAS  Google Scholar 

  16. Liu, S. et al. Direct conductance measurement of individual metallo-DNA duplexes within single-molecule break junctions. Angew. Chem. Int. Ed. 50, 8886–8890 (2011).

    CAS  Google Scholar 

  17. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    CAS  Google Scholar 

  18. Ashwell, G. J., Tyrrell, W. D. & Whittam, A. J. Molecular rectification: self-assembled monolayers in which donor–(π-bridge)–acceptor moieties are centrally located and symmetrically coupled to both gold electrodes. J. Am. Chem. Soc. 126, 7102–7110 (2004).

    CAS  PubMed  Google Scholar 

  19. Nijhuis, C. A., Reus, W. F. & Whitesides, G. M. Mechanism of rectification in tunneling junctions based on molecules with asymmetric potential drops. J. Am. Chem. Soc. 132, 18386–18401 (2010).

    CAS  PubMed  Google Scholar 

  20. Díez-Pérez, I. et al. Rectification and stability of a single molecular diode with controlled orientation. Nature Chem. 1, 635–641 (2009).

    Google Scholar 

  21. Elbing, M. et al. A single-molecule diode. Proc. Natl Acad. Sci. USA 102, 8815–8820 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Batra, A. et al. Tuning rectification in single-molecular diodes. Nano Lett. 13, 6233–6237 (2013).

    CAS  PubMed  Google Scholar 

  23. Yoon, H. J. et al. Rectification in tunneling junctions: 2,2′-bipyridyl-terminated n-alkanethiolates. J. Am. Chem. Soc. 136, 17155–17162 (2014).

    CAS  PubMed  Google Scholar 

  24. Yee, S. K. et al. Inverse rectification in donor–acceptor molecular heterojunctions. ACS Nano 5, 9256–9263 (2011).

    CAS  PubMed  Google Scholar 

  25. Wang, K. et al. Measurement and understanding of single-molecule break junction rectification caused by asymmetric contacts. J. Chem. Phys. 141, 054712 (2014).

    PubMed  Google Scholar 

  26. Xu, B. & Tao, N. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301, 1221–1223 (2003).

    CAS  PubMed  Google Scholar 

  27. Zhou, J., Chen, F. & Xu, B. Fabrication and electronic characterization of single molecular junction devices: a comprehensive approach. J. Am. Chem. Soc. 131, 10439–10446 (2009).

    CAS  PubMed  Google Scholar 

  28. Persil, Ö. et al. Assembly of an antiparallel homo-adenine DNA duplex by small-molecule binding. J. Am. Chem. Soc. 126, 8644–8645 (2004).

    CAS  PubMed  Google Scholar 

  29. Polak, M. & Hud, N. V. Complete disproportionation of duplex poly(dT)·poly(dA) into triplex poly(dT)·poly(dA)·poly(dT) and poly(dA) by coralyne. Nucleic Acids Res. 30, 983–992 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ren, J. & Chaires, J. B. Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry 38, 16067–16075 (1999).

    CAS  PubMed  Google Scholar 

  31. Stadler, R., Geskin, V. & Cornil, J. A theoretical view of unimolecular rectification. J. Phys. Condens. Matter 20, 374105 (2008).

    CAS  PubMed  Google Scholar 

  32. Capozzi, B. et al. Single-molecule diodes with high rectification ratios through environmental control. Nature Nanotech. 10, 522–527 (2015).

    CAS  Google Scholar 

  33. Huang, C. et al. Break junction under electrochemical gating: testbed for single-molecule electronics. Chem. Soc. Rev. 44, 889–901 (2015).

    CAS  PubMed  Google Scholar 

  34. Capozzi, B. et al. Tunable charge transport in single-molecule junctions via electrolytic gating. Nano Lett. 14, 1400–1404 (2014).

    CAS  PubMed  Google Scholar 

  35. Genereux, J. C., Wuerth, S. M. & Barton, J. K. Single-step charge transport through DNA over long distances. J. Am. Chem. Soc. 133, 3863–3868 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tan, B. et al. Charge transport in DNA nanowires connected to carbon nanotubes. Phys. Rev. B 92, 075429 (2015).

    Google Scholar 

  37. Brisker-Klaiman, D. & Peskin, U. Coherent elastic transport contribution to currents through ordered DNA molecular junctions. J. Phys. Chem. C 114, 19077–19082 (2010).

    CAS  Google Scholar 

  38. Cuniberti, G. et al. in Charge Migration in DNA (ed. Chakraborty, T.) 1–20 (Springer, 2007).

    Google Scholar 

  39. Yi, J. Conduction of DNA molecules: a charge-ladder model. Phys. Rev. B 68, 193103 (2003).

    Google Scholar 

  40. Grib, N. et al. Distance-dependent coherent charge transport in DNA: crossover from tunneling to free propagation. J. Biophys. Chem. 1, 77–85 (2010).

    CAS  Google Scholar 

  41. Jortner, J. et al. Superexchange mediated charge hopping in DNA. J. Phys. Chem. A 106, 7599–7606 (2002).

    CAS  Google Scholar 

  42. Voityuk, A. A. et al. Energetics of hole transfer in DNA. Chem. Phys. Lett. 324, 430–434 (2000).

    CAS  Google Scholar 

  43. Voityuk, A. A. et al. Electronic coupling for charge transfer and transport in DNA. J. Phys. Chem. B 104, 9740–9745 (2000).

    CAS  Google Scholar 

  44. Perrin, M. L. et al. Large tunable image–charge effects in single-molecule junctions. Nature Nanotech. 8, 282–287 (2013).

    CAS  Google Scholar 

  45. Xu, B. & Dubi, Y. Negative differential conductance in molecular junctions: an overview of experiment and theory. J. Phys. Condens. Matter 27, 263202 (2015).

    PubMed  Google Scholar 

  46. Verzijl, C. J. O., Seldenthuis, J. S. & Thijssen, J. M. Applicability of the wide-band limit in DFT-based molecular transport calculations. J. Chem. Phys. 138, 094102 (2013).

    CAS  PubMed  Google Scholar 

  47. Vanderbilt, D. & Louie, S. G. A Monte-Carlo simulated annealing approach to optimization over continuous variables. J. Comput. Phys. 56, 259–271 (1984).

    Google Scholar 

  48. Nowak, A. M. & McCreery, R. L. In situ Raman spectroscopy of bias-induced structural changes in nitroazobenzene molecular electronic junctions. J. Am. Chem. Soc. 126, 16621–16631 (2004).

    CAS  PubMed  Google Scholar 

  49. Kornilovitch, P. E., Bratkovsky, A. M. & Stanley Williams, R. Current rectification by molecules with asymmetric tunneling barriers. Phys. Rev. B 66, 165436 (2002).

    Google Scholar 

  50. Liu, R. et al. Organometallic molecular rectification. J. Chem. Phys. 124, 024718 (2006).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the US National Science Foundation for funding this work (ECCS 0823849 and ECCS 1231967).

Author information

Authors and Affiliations

Authors

Contributions

B.X. conceived the experiment. C.G., K.W., J.H. and B.W. performed the experiment and analysed the data. Y.D. supervised the theoretical calculation. E.Z.-H. and Y.D. carried out the calculations. C.G., K.W., Y.D. and B.X. co-wrote the paper.

Corresponding authors

Correspondence to Yonatan Dubi or Bingqian Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Wang, K., Zerah-Harush, E. et al. Molecular rectifier composed of DNA with high rectification ratio enabled by intercalation. Nature Chem 8, 484–490 (2016). https://doi.org/10.1038/nchem.2480

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2480

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing