Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates

Abstract

The rational synthesis of hierarchical three-dimensional nanostructures with specific compositions, morphologies and functionalities is important for applications in a variety of fields ranging from energy conversion and electronics to biotechnology. Here, we report a seeded growth approach for the controlled epitaxial growth of three types of hierarchical one-dimensional (1D)/two-dimensional (2D) nanostructures, where nanorod arrays of II–VI semiconductor CdS or CdSe are grown on the selective facets of hexagonal-shaped nanoplates, either on the two basal facets of the nanoplate, or on one basal facet, or on the two basal facets and six side facets. The seed engineering of 2D hexagonal-shaped nanoplates is the key factor for growth of the three resulting types of 1D/2D nanostructures. The wurtzite- and zinc-blende-type polymorphs of semiconductors are used to determine the facet-selective epitaxial growth of 1D nanorod arrays, resulting in the formation of different hierarchical three-dimensional (3D) nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis and characterization of type A nanostructures.
Figure 2: Synthesis and characterization of type B nanostructures.
Figure 3: Synthesis and characterization of type C nanostructures.

Similar content being viewed by others

References

  1. Chio, C. L. & Alivisatos, A. P. From artificial atoms to nanocrystal molecules: preparation and properties of more complex nanostructures. Annu. Rev. Phys. Chem. 61, 369–389 (2010).

    Article  Google Scholar 

  2. Joshi, R. K. & Schneider, J. J. Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality. Chem. Soc. Rev. 41, 5285–5312 (2012).

    Article  CAS  Google Scholar 

  3. Tan, S. J., Campolongo, M. J., Luo, D. & Cheng, W. Building plasmonic nanostructures with DNA. Nature Nanotech. 6, 268–276 (2011).

    Article  CAS  Google Scholar 

  4. Manna, L., Milliron, D. J., Meisel, A., Scher, E. C. & Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater. 2, 382–385 (2003).

    Article  CAS  Google Scholar 

  5. Bierman, M. J., Lau, Y. K. A., Kvit, A. V., Schmitt, A. L. & Jin, S. Dislocation-driven nanowire growth and Eshelby twist. Science 320, 1060–1063 (2008).

    Article  CAS  Google Scholar 

  6. Zhu, J. et al. Formation of chiral branched nanowires by the Eshelby twist. Nature Nanotech. 3, 477–481 (2008).

    Article  CAS  Google Scholar 

  7. Bierman, M. J. & Jin, S. Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ. Sci. 2, 1050–1059 (2009).

    Article  CAS  Google Scholar 

  8. Gur, I., Fromer, N. A., Chen, C.-P., Kanaras, A. G. & Alivisatos, A. P. Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. Nano Lett. 7, 409–414 (2007).

    Article  CAS  Google Scholar 

  9. Cui, Y., Banin, U., Bjork, M. T. & Alivisatos, A. P. Electrical transport through a single nanoscale semiconductor branch point. Nano Lett. 5, 1519–1523 (2005).

    Article  CAS  Google Scholar 

  10. Yan, R., Gargas, D. & Yang, P. Nanowire photonics. Nature Photon. 3, 569–576 (2009).

    Article  CAS  Google Scholar 

  11. Tian, B. & Lieber, C. M. Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 6, 31–51 (2013).

    Article  CAS  Google Scholar 

  12. Talapin, D. V. et al. Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7, 2951–2959 (2007).

    Article  CAS  Google Scholar 

  13. Fiore, A. et al. Tetrapod-shaped colloidal nanocrystals of II–VI semiconductors prepared by seeded growth. J. Am. Chem. Soc. 131, 2274–2282 (2009).

    Article  CAS  Google Scholar 

  14. Deka, S. et al. Octapod-shaped colloidal nanocrystals of cadmium chalcogenides via ‘one-pot’ cation exchange and seeded growth. Nano Lett. 10, 3770–3776 (2010).

    Article  CAS  Google Scholar 

  15. Dick, K. A. et al. Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nature Mater. 3, 380–384 (2004).

    Article  CAS  Google Scholar 

  16. Wang, D., Qian, F., Yang, C., Zhong, Z. & Lieber, C. M. Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 4, 871–874 (2004).

    Article  CAS  Google Scholar 

  17. Dong, A., Tang, R. & Buhro, W. E. Solution-based growth and structural characterization of homo- and heterobranched semiconductor nanowires. J. Am. Chem. Soc. 129, 12254–12262 (2007).

    Article  CAS  Google Scholar 

  18. Li, C., Yu, Y., Chi, M. & Cao, L. Epitaxial nanosheet–nanowire heterostructures. Nano Lett. 13, 948–953 (2013).

    Article  CAS  Google Scholar 

  19. Xu, B. et al. A 1D/2D helical CdS/ZnIn2S4 nano-heterostructure. Angew. Chem. Int. Ed. 53, 2339–2343 (2014).

    Article  CAS  Google Scholar 

  20. Ithurria, S. et al. Colloidal nanoplatelets with two-dimensional electronic structure. Nature Mater. 10, 936–941 (2011).

    Article  CAS  Google Scholar 

  21. Lhuillier, E. et al. Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications. Acc. Chem. Res. 48, 22–30 (2015).

    Article  CAS  Google Scholar 

  22. Sun, Y., Gao, S., Lei, F., Xiao, C. & Xie, Y. Ultrathin two-dimensional inorganic materials: new opportunities for solid state nanochemistry. Acc. Chem. Res. 48, 3–12 (2015).

    Article  CAS  Google Scholar 

  23. De Trizio, L. et al. Colloidal CdSe/Cu3P/CdSe nanocrystal heterostructures and their evolution upon thermal annealing. ACS Nano 7, 3997–4005 (2013).

    Article  CAS  Google Scholar 

  24. Lee, T. I. et al. Playing with dimensions: rational design for heteroepitaxial p–n junctions. Nano Lett. 12, 68–76 (2012).

    Article  CAS  Google Scholar 

  25. Forticaux, A., Hacialioglu, S., De Grave, J. P., Dziedzic, R. & Jin, S. Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes. ACS Nano 7, 8224–8232 (2013).

    Article  CAS  Google Scholar 

  26. Du, Y. et al. A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nature Commun. 3, 1177 (2012).

    Article  Google Scholar 

  27. Wu, X.-J. et al. Copper-based ternary and quaternary semiconductor nanoplates: templated synthesis, characterization, and photoelectrochemical properties. Angew. Chem. Int. Ed. 53, 8929–8933 (2014).

    Article  CAS  Google Scholar 

  28. Kim, M. R. et al. Influence of chloride ions on the synthesis of colloidal branched CdSe/CdS nanocrystals by seeded growth. ACS Nano 6, 11088–11096 (2012).

    Article  CAS  Google Scholar 

  29. Carbone, L. et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7, 2942–2950 (2007).

    Article  CAS  Google Scholar 

  30. Rempel, J. Y., Trout, B. L., Bawendi, M. G. & Jensen, K. F. Properties of the CdSe(0001), (0001̅), and (112̅ 0) single crystal surfaces: relaxation, reconstruction, and adatom and admolecule adsorption. J. Phys. Chem. B 109, 19320–19328 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministry of Education (MOE) under AcRF Tier 2 (ARC 26/13, no. MOE2013-T2-1-034; ARC 19/15, no. MOE2014-T2-2-093) and AcRF Tier 1 (RGT18/13, RG5/13), and Nanyang Technological University (NTU) under a start-up grant (M4081296.070.500000) in Singapore. Research was also conducted by the NTU-HUJ-BGU Nanomaterials for Energy and Water Management Programme at the Campus for Research Excellence and Technological Enterprise (CREATE), which is supported by the National Research Foundation of the Prime Minister's Office, Singapore. Y.H. thanks the King Abdullah University of Science and Technology for the baseline (BAS/1/1372-01-01) and CCF (FCC/1/1972-03-01) research grants.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. proposed the research direction and guided the project. X.-J.W. and J.C. designed and performed the entire experiment. Y.Z. and Y.H. carried out the high-resolution TEM tomography. All authors analysed and discussed the experimental results. X.-J.W., C.T. and H.Z. drafted the manuscript.

Corresponding author

Correspondence to Hua Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 16911 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, XJ., Chen, J., Tan, C. et al. Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. Nature Chem 8, 470–475 (2016). https://doi.org/10.1038/nchem.2473

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2473

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing