Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen

Abstract

During the charging and discharging of lithium-ion-battery cathodes through the de- and reintercalation of lithium ions, electroneutrality is maintained by transition-metal redox chemistry, which limits the charge that can be stored. However, for some transition-metal oxides this limit can be broken and oxygen loss and/or oxygen redox reactions have been proposed to explain the phenomenon. We present operando mass spectrometry of 18O-labelled Li1.2[Ni0.132+Co0.133+Mn0.544+]O2, which demonstrates that oxygen is extracted from the lattice on charging a Li1.2[Ni0.132+Co0.133+Mn0.544+]O2 cathode, although we detected no O2 evolution. Combined soft X-ray absorption spectroscopy, resonant inelastic X-ray scattering spectroscopy, X-ray absorption near edge structure spectroscopy and Raman spectroscopy demonstrates that, in addition to oxygen loss, Li+ removal is charge compensated by the formation of localized electron holes on O atoms coordinated by Mn4+ and Li+ ions, which serve to promote the localization, and not the formation, of true O22− (peroxide, O–O ~1.45 Å) species. The quantity of charge compensated by oxygen removal and by the formation of electron holes on the O atoms is estimated, and for the case described here the latter dominates.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Charge–discharge curves for Li1.2Ni0.13Co0.13Mn0.54O2.
Figure 2: Operando mass spectrometry of the 18O-labelled Li1.2Ni0.13Co0.13Mn0.54O2 cathode during the first cycle.
Figure 3: O K-edge SXAS of Li1.2Ni0.13Co0.13Mn0.54O2.
Figure 4: The nature of holes on oxygen.
Figure 5: Evolution of the transition metal K-edge positions.
Figure 6: The location of oxygen anions in Li1.2Ni0.13Co0.13Mn0.54O2 at which localized electron-hole states occur.

References

  1. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  Google Scholar 

  2. Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nature Chem. 7, 19–29 (2015).

    Article  CAS  Google Scholar 

  3. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article  CAS  Google Scholar 

  4. Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 104, 4271–4301 (2004).

    Article  CAS  Google Scholar 

  5. Croguennec, L. & Palacin, M. R. Recent achievements on inorganic electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 137, 3140–3156 (2015).

    Article  CAS  Google Scholar 

  6. Robert, R., Villevieille, C. & Novak, P. Enhancement of the high potential specific charge in layered electrode materials for lithium-ion batteries. J. Mater. Chem. A 2, 8589–8598 (2014).

    Article  CAS  Google Scholar 

  7. Weaving, J. S. et al. Development of high energy density Li-ion batteries based on LiNi1–xyCoxAlyO2 . J. Power Sources 97–98, 733–735 (2001).

    Article  Google Scholar 

  8. Lu, Z. H., MacNeil, D. D. & Dahn, J. R. Layered cathode materials Li[NixLi(1/3–2x/3)Mn(2/3–x/3)]O2 for lithium-ion batteries. Electrochem. Solid State 4, A191–A194 (2001).

    Article  CAS  Google Scholar 

  9. Lu, Z. H. & Dahn, J. R. Understanding the anomalous capacity of Li/Li[NixLi(1/3–2x/3)Mn(2/3–x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc. 149, A815–A822 (2002).

    Article  CAS  Google Scholar 

  10. Johnson, C. S. et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1 – x)LiMn0.5Ni0.5O2 electrodes. Electrochem. Commun. 6, 1085–1091 (2004).

    Article  CAS  Google Scholar 

  11. Thackeray, M. M. et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17, 3112–3125 (2007).

    Article  CAS  Google Scholar 

  12. Thackeray, M. M., Wolverton, C. & Isaacs, E. D. Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energ. Environ. Sci. 5, 7854–7863 (2012).

    Article  CAS  Google Scholar 

  13. Koga, H. et al. Different oxygen redox participation for bulk and surface: a possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2 . J. Power Sources 236, 250–258 (2013).

    Article  CAS  Google Scholar 

  14. Koga, H. et al. Li1.20Mn0.54Co0.13Ni0.13O2 with different particle sizes as attractive positive electrode materials for lithium-ion batteries: insights into their structure. J. Phys. Chem. C 116, 13497–13506 (2012).

    Article  CAS  Google Scholar 

  15. Yabuuchi, N., Yoshii, K., Myung, S. T., Nakai, I. & Komaba, S. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3–LiCo1/3Ni1/3Mn1/3O2 . J. Am. Chem. Soc. 133, 4404–4419 (2011).

    Article  CAS  Google Scholar 

  16. Fong, R., Dahn, J. R. & Jones, C. H. W. Electrochemistry of pyrite-based cathodes for ambient-temperature lithium batteries. J. Electrochem. Soc. 136, 3206–3210 (1989).

    Article  CAS  Google Scholar 

  17. Goodenough, J. B. & Kim, Y. Locating redox couples in the layered sulfides with application to Cu[Cr2]S4 . J. Solid State Chem. 182, 2904–2911 (2009).

    Article  CAS  Google Scholar 

  18. Rouxel, J. Anion-cation redox competition and the formation of new compounds in highly covalent systems. Chem. Eur. J. 2, 1053–1059 (1996).

    Article  CAS  Google Scholar 

  19. Tarascon, J. M. et al. In situ structural and electrochemical study of Ni1-xCoxO2 metastable oxides prepared by soft chemistry. J. Solid State Chem. 147, 410–420 (1999).

    Article  CAS  Google Scholar 

  20. Saubanère, M., McCalla, E., Tarascon, J. M. & Doublet, M.-L. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. http://dx.doi.org/10.1039/C5EE03048J Environ. Energy Sci. (2016).

  21. Koga, H. et al. Operando X-ray absorption study of the redox processes involved upon cycling of the Li-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li ion batteries. J. Phys. Chem. C 118, 5700–5709 (2014).

    Article  CAS  Google Scholar 

  22. Armstrong, A. R. et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 . J. Am. Chem. Soc. 128, 8694–8698 (2006).

    Article  CAS  Google Scholar 

  23. Castel, E., Berg, E. J., El Kazzi, M., Novak, P. & Villevieille, C. Differential electrochemical mass spectrometry study of the interface of Li2MnO3·(1–x)LiMO2 (M = Ni, Co, and Mn) material as a positive electrode in Li-ion batteries. Chem. Mater. 26, 5051–5057 (2014).

    Article  CAS  Google Scholar 

  24. Jiang, M., Key, B., Meng, Y. S. & Grey, C. P. Electrochemical and structural study of the layered, ‘Li-excess’ lithium-ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O2 . Chem. Mater. 21, 2733–2745 (2009).

    Article  CAS  Google Scholar 

  25. Hong, J. et al. Critical role of oxygen evolved from layered Li-excess metal oxides in lithium rechargeable batteries. Chem. Mater. 24, 2692–2697 (2012).

    Article  CAS  Google Scholar 

  26. Hy, S., Felix, F., Rick, J., Su, W. N. & Hwang, B. J. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1–2x)/3Mn(2–x)/3]O2 (0 ≤ x ≤ 0.5). J. Am. Chem. Soc. 136, 999–1007 (2014).

    Article  CAS  Google Scholar 

  27. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nature Mater. 12, 827–835 (2013).

    Article  CAS  Google Scholar 

  28. Sathiya, M. et al. High performance Li2Ru1–yMnyO3 (0.2 ≤ y ≤ 0.8) cathode materials for rechargeable lithium-ion batteries: their understanding. Chem. Mater. 25, 1121–1131 (2013).

    Article  CAS  Google Scholar 

  29. Sathiya, M. et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nature Mater. 14, 230–238 (2015).

    Article  CAS  Google Scholar 

  30. McCalla, E. et al. Visualization of O–O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015).

    Article  CAS  Google Scholar 

  31. Goodenough, J. B. Perspective on engineering transition-metal oxides. Chem. Mater. 26, 820–829 (2014).

    Article  CAS  Google Scholar 

  32. Genevois, C. et al. Insight into the atomic structure of cycled lithium-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 using HAADF STEM and electron nanodiffraction. J. Phys. Chem. C 119, 75–83 (2015).

    Article  CAS  Google Scholar 

  33. Oishi, M. et al. Charge compensation mechanisms in Li1.16Ni0.15Co0.19Mn0.50O2 positive electrode material for Li-ion batteries analyzed by a combination of hard and soft X-ray absorption near edge structure. J. Power Sources 222, 45–51 (2013).

    Article  CAS  Google Scholar 

  34. Freunberger, S. A. et al. Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040–8047 (2011).

    Article  CAS  Google Scholar 

  35. Aurbach, D., Daroux, M., Faguy, P. & Yeager, E. The electrochemistry of noble-metal electrodes in aprotic organic-solvents containing lithium-salts. J. Electroanal. Chem. 297, 225–244 (1991).

    Article  CAS  Google Scholar 

  36. Aurbach, D., Gofer, Y. & Langzam, J. The correlation between surface-chemistry, surface-morphology, and cycling efficiency of lithium electrodes in a few polar aprotic systems. J. Electrochem. Soc. 136, 3198–3205 (1989).

    Article  CAS  Google Scholar 

  37. Oishi, M. et al. Direct observation of reversible charge compensation by oxygen ion in Li-rich manganese layered oxide positive electrode material, Li1.16Ni0.15Co0.19Mn0.50O2 . J. Power Sources 276, 89–94 (2015).

    Article  CAS  Google Scholar 

  38. Koga, H. et al. Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2 . J. Electrochem. Soc. 160, A786–A792 (2013).

    Article  CAS  Google Scholar 

  39. Ruther, R. E., Callender, A. F., Zhou, H., Martha, S. K. & Nanda, J. Raman microscopy of lithium-manganese-rich transition metal oxide cathodes. J. Electrochem. Soc. 162, A98–A102 (2015).

    Article  CAS  Google Scholar 

  40. Amalraj, F. et al. Study of the lithium-rich integrated compound xLi2MnO3·(1–x)LiMO2 (x around 0.5; M = Mn, Ni, Co; 2:2:1) and its electrochemical activity as positive electrode in lithium cells. J. Electrochem. Soc. 160, A324–A337 (2013).

    Article  CAS  Google Scholar 

  41. Hy, S., Su, W. N., Chen, J. M. & Hwang, B. J. Soft X-ray absorption spectroscopic and Raman studies on Li1.2Ni0.2Mn0.6O2 for lithium-ion batteries. J. Phys. Chem. C 116, 25242–25247 (2012).

    Article  CAS  Google Scholar 

  42. Magnuson, M. et al. Self-doping processes between planes and chains in the metal-to-superconductor transition of YBa2Cu3O6.9 . Sci. Rep. 4, 7017 (2014).

    Article  CAS  Google Scholar 

  43. Duda, L. C. et al. Bandlike and excitonic states of oxygen in CuGeO3: observation using polarized resonant soft-X-ray emission spectroscopy. Phys. Rev. B 61, 4186–4189 (2000).

    Article  CAS  Google Scholar 

  44. Carniato, S. et al. A new method to derive electronegativity from resonant inelastic X-ray scattering. J. Chem. Phys. 137, 144303 (2012).

    Article  CAS  Google Scholar 

  45. Hoang, K. Defect physics, delithiation mechanism, and electronic and ionic conduction in layered lithium manganese oxide cathode materials. Phys. Rev. Appl. 3, 024013 (2015).

    Article  CAS  Google Scholar 

  46. Ito, A. et al. In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 . J. Power Sources 196, 6828–6834 (2011).

    Article  CAS  Google Scholar 

  47. Kim, J. M. & Chung, H. T. The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V. Electrochim. Acta 49, 937–944 (2004).

    Article  CAS  Google Scholar 

  48. Weill, F., Tran, N., Croguennec, L. & Delmas, C. Cation ordering in the layered Li1+x(Ni0.425Mn0.425Co0.15)1–xO2 materials (x = 0 and 0.12). J. Power Sources 172, 893–900 (2007).

    Article  CAS  Google Scholar 

  49. Meng, Y. S. et al. Cation ordering in layered O3 Li[NixLi1/3–2x/3Mn2/3–x/3]O2 (0 ≤ x ≤ 1/2) compounds. Chem. Mater. 17, 2386–2394 (2005).

    Article  CAS  Google Scholar 

  50. de Groot, F. M. F. et al. Oxygen 1s X-ray-absorption edges of transition-metal oxides. Phys. Rev. B 40, 5715–5723 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

P.G.B. is indebted to the Engineering and Physical Sciences Research Council, including the SUPERGEN program, for financial support. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, US Department of Energy, under Contract No. DE-AC02-05CH11231. The authors are also grateful to A. Dent and G. Cibin for contributing to the collection of hard XAS data and R. Smith for the collection of neutron diffraction data.

Author information

Authors and Affiliations

Authors

Contributions

K.L. and M.R.R. contributed to all aspects of the research. R.H. contributed to the synthesis and Raman spectroscopy. L.C.D., N.G., Y.-S.L., K.E. and J.G. contributed to the measurement and analysis of SXAS and RIXS spectroscopy. D.M.P. and A.V.C. contributed to analysis of hard XAS measurements. P.G.B., K.L., M.R.R. and L.C.D. interpreted the data. P.G.B. wrote the paper with contributions from K.L. and M.R.R. The project was supervised by P.G.B.

Corresponding author

Correspondence to Peter G. Bruce.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 18930 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luo, K., Roberts, M., Hao, R. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nature Chem 8, 684–691 (2016). https://doi.org/10.1038/nchem.2471

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2471

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing