Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts

Abstract

The discharging and charging of batteries require ion transfer across phase boundaries. In conventional lithium-ion batteries, Li+ ions have to cross the liquid electrolyte and only need to pass the electrode interfaces. Future high-energy batteries may need to work as hybrids, and so serially combine a liquid electrolyte and a solid electrolyte to suppress unwanted redox shuttles. This adds new interfaces that might significantly decrease the cycling-rate capability. Here we show that the interface between a typical fast-ion-conducting solid electrolyte and a conventional liquid electrolyte is chemically unstable and forms a resistive solid-liquid electrolyte interphase (SLEI). Insights into the kinetics of this new type of interphase are obtained by impedance studies of a two-chamber cell. The chemistry of the SLEI, its growth with time and the influence of water impurities are examined by state-of-the-art surface analysis and depth profiling.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematics of ion transport and resistance contributions in cells with solid–liquid phase boundaries.
Figure 2: Electrochemical characteristics of the hybrid cell set-up and resulting cell performance.
Figure 3: Temporal evolution of the different resistance contributions in the 4P cell.
Figure 4: XPS analysis of the SLEI.
Figure 5: ToF-SIMS analysis of the SLEI.

References

  1. Liu, Z., Fu, W. & Liang, C. in Handbook of Battery Materials (eds Daniel, C. & Besenhard, J. O.) 811–836 (Wiley-VCH, 2012).

    Google Scholar 

  2. Ji, X. & Nazar, L. F. Advances in Li–S batteries. J. Mater. Chem. 20, 9821–9826 (2010).

    CAS  Google Scholar 

  3. Mikhaylik, Y. V. & Akridge, J. R. Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc. 151, A1969–A1976 (2004).

    CAS  Google Scholar 

  4. Ellis, B. L., Lee, K. T. & Nazar, L. F. Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691–714 (2010).

    CAS  Google Scholar 

  5. Busche, M. R. et al. Systematical electrochemical study on the parasitic shuttle-effect in lithium–sulfur-cells at different temperatures and different rates. J. Power Sources 259, 289–299 (2014).

    CAS  Google Scholar 

  6. Rauh, R. D., Abraham, K. M., Pearson, G. F., Surprenant, J. K. & Brummer, S. B. A lithium/dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126, 523–527 (1979).

    CAS  Google Scholar 

  7. Leitner, K. W., Wolf, H., Garsuch, A., Chesneau, F. & Schulz-Dobrick, M. Electroactive separator for high voltage graphite/LiNi0.5Mn1.5O4 lithium ion batteries. J. Power Sources 244, 548–551 (2013).

    CAS  Google Scholar 

  8. Bergner, B. J., Schürmann, A., Peppler, K. & Janek, J. TEMPO: a mobile catalyst for rechargeable Li–O2 batteries. J. Am. Chem. Soc. 136, 15054–15064 (2014).

    CAS  PubMed  Google Scholar 

  9. Xiong, S., Xie, K., Diao, Y. & Hong, X. Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries. J. Power Sources 246, 840–845 (2014).

    CAS  Google Scholar 

  10. Lee, Y. M., Choi, N.-S., Park, J. H. & Park, J.-K. Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J. Power Sources 119–121, 964–972 (2003).

    Google Scholar 

  11. Manthiram, A., Fu, Y., Chung, S.-H., Zu, C. & Su, Y.-S. Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014).

    CAS  PubMed  Google Scholar 

  12. Chen, L. & Shaw, L. L. Recent advances in lithium–sulfur batteries. J. Power Sources 267, 770–783 (2014).

    CAS  Google Scholar 

  13. Zhang, S. S. Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J. Power Sources 231, 153–162 (2013).

    CAS  Google Scholar 

  14. Adelhelm, P. et al. From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J. Nanotechnol. 6, 1016–1055 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hassoun, J. & Scrosati, B. A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 2371–2374 (2010).

    CAS  Google Scholar 

  16. Liang, X. et al. Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable polymer Li/S battery. J. Power Sources 196, 3655–3658 (2011).

    CAS  Google Scholar 

  17. Marmorstein, D. et al. Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J. Power Sources 89, 219–226 (2000).

    CAS  Google Scholar 

  18. Hassoun, J. & Scrosati, B. Moving to a solid-state configuration: a valid approach to making lithium-sulfur batteries viable for practical applications. Adv. Mater. 22, 5198–5201 (2010).

    CAS  PubMed  Google Scholar 

  19. Hayashi, A., Ohtomo, T., Mizuno, F., Tadanaga, K. & Tatsumisago, M. All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes. Electrochem. Commun. 5, 701–705 (2003).

    CAS  Google Scholar 

  20. Jin, Z., Xie, K., Hong, X., Hu, Z. & Liu, X. Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells. J. Power Sources 218, 163–167 (2012).

    CAS  Google Scholar 

  21. Huang, J.-Q. et al. Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy Environ. Sci. 7, 347–353 (2014).

    CAS  Google Scholar 

  22. Bauer, I., Thieme, S., Brückner, J., Althues, H. & Kaskel, S. Reduced polysulfide shuttle in lithium–sulfur batteries using Nafion-based separators. J. Power Sources 251, 417–422 (2014).

    CAS  Google Scholar 

  23. Zhang, Z., Lai, Y., Zhang, Z., Zhang, K. & Li, J. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim. Acta 129, 55–61 (2014).

    Google Scholar 

  24. Li, W. et al. A V2O5 polysulfide anion barrier for long-lived Li–S batteries. Chem. Mater. 26, 3403–3410 (2014).

    CAS  Google Scholar 

  25. Wang, Q. et al. A shuttle effect free lithium sulfur battery based on a hybrid electrolyte. Phys. Chem. Chem. Phys. 16, 21225–21229 (2014).

    CAS  PubMed  Google Scholar 

  26. Vizintin, A., Patel, M. U. M., Genorio, B. & Dominko, R. Effective separation of lithium anode and sulfur cathode in lithium-sulfur batteries. ChemElectroChem 1, 1040–1045 (2014).

    CAS  Google Scholar 

  27. Wenzel, S. et al. Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte. J. Power Sources 243, 758–765 (2013).

    CAS  Google Scholar 

  28. Peng, Z., Freunberger, S. A., Chen, Y. & Bruce, P. G. A reversible and higher-rate Li–O2 battery. Science 337, 563–566 (2012).

    CAS  PubMed  Google Scholar 

  29. Imanishi, N. et al. Lithium anode for lithium–air secondary batteries. J. Power Sources 185, 1392–1397 (2008).

    CAS  Google Scholar 

  30. Zhang, T. et al. Water-stable lithium anode with the three-layer construction for aqueous lithium–air secondary batteries. Electrochem. Solid State Lett. 12, A132–A135 (2009).

    CAS  Google Scholar 

  31. Sagane, F., Abe, T., Iriyama, Y. & Ogumi, Z. Li+ and Na+ transfer through interfaces between inorganic solid electrolytes and polymer or liquid electrolytes. J. Power Sources 146, 749–752 (2005).

    CAS  Google Scholar 

  32. Abe, T., Sagane, F., Ohtsuka, M., Iriyama, Y. & Ogumi, Z. Lithium-ion transfer at the interface between lithium-ion conductive ceramic electrolyte and liquid electrolyte—a key to enhancing the rate capability of lithium-ion batteries. J. Electrochem. Soc. 152, A2151–A2154 (2005).

    Google Scholar 

  33. Sagane, F., Abe, T. & Ogumi, Z. Li+-ion transfer through the interface between Li+-ion conductive ceramic electrolyte and Li+-ion-concentrated propylene carbonate solution. J. Phys. Chem. C 113, 20135–20138 (2009).

    CAS  Google Scholar 

  34. Yamada, I., Abe, T., Iriyama, Y. & Ogumi, Z. Lithium-ion transfer at LiMn2O4 thin film electrode prepared by pulsed laser deposition. Electrochem. Commun. 5, 502–505 (2003).

    CAS  Google Scholar 

  35. Abe, T., Fukuda, H., Iriyama, Y. & Ogumi, Z. Solvated Li-ion transfer at interface between graphite and electrolyte. J. Electrochem. Soc. 151, A1120–A1123 (2004).

    CAS  Google Scholar 

  36. Yamada, Y., Sagane, F., Iriyama, Y., Abe, T. & Ogumi, Z. Kinetics of lithium-ion transfer at the interface between Li0.35La0.55TiO3 and binary electrolytes. J. Phys. Chem. C 113, 14528–14532 (2009).

    CAS  Google Scholar 

  37. Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000).

    CAS  Google Scholar 

  38. Aurbach, D. et al. On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J. Electrochem. Soc. 156, 694–702 (2009).

    Google Scholar 

  39. Mikhaylik, Y. V. Electrolytes for lithium sulfur cells. US Patent 2008/0187840 A1 (2008).

  40. Thokchom, J. S., Gupta, N. & Kumar, B. Superionic conductivity in a lithium aluminum germanium phosphate glass–ceramic. J. Electrochem. Soc. 155, A915–A920 (2008).

    CAS  Google Scholar 

  41. Gellert, M. et al. Grain boundaries in a lithium aluminum titanium phosphate-type fast lithium ion conducting glass ceramic: microstructure and nonlinear ion transport properties. J. Phys. Chem. C 116, 22675–22678 (2012).

    CAS  Google Scholar 

  42. Hartmann, P. et al. Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117, 21064–21074 (2013).

    CAS  Google Scholar 

  43. Bauerle, J. E. Study of solid electrolyte polarization by a complex admittance method. J. Phys. Chem. Solids 30, 2657–2670 (1969).

    CAS  Google Scholar 

  44. Mariappan, C. R., Yada, C., Rosciano, F. & Roling, B. Correlation between micro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 ceramics. J. Power Sources 196, 6456–6464 (2011).

    CAS  Google Scholar 

  45. Hebb, M. H. Electrical conductivity of silver sulfide. J. Chem. Phys. 20, 185–190 (1952).

    CAS  Google Scholar 

  46. Wagner, C. Investigations on silver sulfide. J. Chem. Phys. 21, 1819–1827 (1953).

    CAS  Google Scholar 

  47. Rosenkranz, C. & Janek, J. Determination of local potentials in mixed conductors—two examples. Solid State Ionics 82, 95–106 (1995).

    CAS  Google Scholar 

  48. García-Colín, L. S., del Castillo, L. F. & Goldstein, P. Theoretical basis for the Vogel–Fulcher–Tammann equation. Phys. Rev. B 40, 7040–7044 (1989).

    Google Scholar 

  49. Pinson, M. B. & Bazant, M. Z. Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction. J. Electrochem. Soc. 160, A243–A250 (2013).

    CAS  Google Scholar 

  50. Christensen, J. & Newman, J. A mathematical model for the lithium-ion negative electrode solid electrolyte interphase. J. Electrochem. Soc. 151, A1977–A1988 (2004).

    CAS  Google Scholar 

  51. Peled, E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. J. Electrochem. Soc. 126, 2047–2051 (1979).

    CAS  Google Scholar 

  52. Bockris, J. O., Reddy, A. K. N. & Gamboa-Aldeco, M. Modern Electrochemistry Vol. 2A (Kluwer Academic, 2000).

    Google Scholar 

  53. Goldman, J. L., Dominey, L. A. & Koch, V. R. The stabilization of LiAsF6/1,3-dioxolane for use in rechargeable lithium batteries. J. Power Sources 26, 519–523 (1989).

    CAS  Google Scholar 

  54. Dedryvère, R. et al. XPS valence characterization of lithium salts as a tool to study electrode/electrolyte interfaces of Li-ion batteries. J. Phys. Chem. B 110, 12986–12992 (2006).

    PubMed  Google Scholar 

  55. Xiong, S., Xie, K., Diao, Y. & Hong, X. On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium–sulfur batteries. J. Power Sources 236, 181–187 (2013).

    CAS  Google Scholar 

  56. Ensling, D., Stjerndahl, M., Nytén, A., Gustafsson, T. & Thomas, J. O. A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI- and LiPF6-based electrolytes. J. Mater. Chem. 19, 82–88 (2009).

    CAS  Google Scholar 

  57. Ota, H. et al. Structural and functional analysis of surface film on Li anode in vinylene carbonate-containing electrolyte. J. Electrochem. Soc. 151, A1778–A1788 (2004).

    CAS  Google Scholar 

  58. Hu, Y., Kong, W., Li, H., Huang, X. & Chen, L. Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries. Electrochem. Commun. 6, 126–131 (2004).

    CAS  Google Scholar 

  59. Schechter, A., Aurbach, D. & Cohen, H. X-ray photoelectron spectroscopy study of surface films formed on Li electrodes freshly prepared in alkyl carbonate solutions. Langmuir 15, 3334–3342 (1999).

    CAS  Google Scholar 

  60. Bar-Tow, D., Peled, E. & Burstein, L. A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries. J. Electrochem. Soc. 146, 824–832 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the BASF Scientific Network for Electrochemistry and Batteries. The authors thank A.-K. Dürr, P. Hartmann, K. Leitner, J. Ter Maat (BASF SE), B. Luerßen, C. Fiedler, B. Mogwitz, M. Rohnke, J. Sann, M. Elm, D. Mollenhauer, H. Weigand (Justus-Liebig-University Giessen) and S. Berendts (TU Berlin) for helpful discussions and scientific support. We appreciate fruitful discussions within the BASF SE Network for Electrochemistry and Batteries.

Author information

Authors and Affiliations

Authors

Contributions

J.J., P.A. and M.R.B. conceived the experiments; M.R.B. designed the measurement set-ups and performed the electrochemical experiments with the assistance of T.D.; T.L., M.F. and M.R.B. carried out the XPS and ToF-SIMS experiments and evaluated the data; XRD measurements and Rietveld refinements were performed by D.A.W. and M.R.B.; M.S. and M.R. conducted the LAGP solid-electrolyte production and basic analysis thereof, and M.R.B. carried out the LiPON thin-film synthesis and basic solid-electrolyte analysis. The manuscript was written by M.R.B. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Jürgen Janek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 6228 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Busche, M., Drossel, T., Leichtweiss, T. et al. Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nature Chem 8, 426–434 (2016). https://doi.org/10.1038/nchem.2470

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2470

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing