Encoding complexity within supramolecular analogues of frustrated magnets

Abstract

The solid phases of gold(I) and/or silver(I) cyanides are supramolecular assemblies of inorganic polymer chains in which the key structural degrees of freedom—namely, the relative vertical shifts of neighbouring chains—are mathematically equivalent to the phase angles of rotating planar (‘XY’) spins. Here, we show how the supramolecular interactions between chains can be tuned to mimic different magnetic interactions. In this way, the structures of gold(I) and/or silver(I) cyanides reflect the phase behaviour of triangular XY magnets. Complex magnetic states predicted for this family of magnets—including collective spin-vortices of relevance to data storage applications—are realized in the structural chemistry of these cyanide polymers. Our results demonstrate how chemically simple inorganic materials can behave as structural analogues of otherwise inaccessible ‘toy’ spin models and also how the theoretical understanding of those models allows control over collective (‘emergent’) phenomena in supramolecular systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Crystal structures of AuCN and AgCN and their relationship to the ground states of triangular XY (anti)ferromagnets.
Figure 2: Interactions in AuCN and AgCN.
Figure 3: Interactions and structural complexity in Au1/2Ag1/2(CN).

References

  1. 1

    Nitschke, J. R. Systems chemistry: molecular networks come of age. Nature 462, 736–738 (2009).

    CAS  PubMed  Google Scholar 

  2. 2

    Tait, S. L. Surface chemistry: self-assembling Sierpiński triangles. Nature Chem. 7, 370–371 (2015).

    CAS  Google Scholar 

  3. 3

    Sun, Q.-F. et al. Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation. Science 328, 1144–1147 (2010).

    CAS  PubMed  Google Scholar 

  4. 4

    Balazs, A. C. & Epstein, I. R. Chemistry. Emergent or just complex? Science 325, 1632–1634 (2009).

    CAS  PubMed  Google Scholar 

  5. 5

    Moessner, R. & Ramirez, A. P. Geometrical frustration. Phys. Today 59, 24–29 (2006).

    CAS  Google Scholar 

  6. 6

    Žukovič, M. & Idogaki, T. Low-temperature long-range ordering of a classical XY spin system with bilinear-biquadratic exchange Hamiltonian. Physica B 329–333, 1055–1056 (2003).

    Google Scholar 

  7. 7

    Anderson, P. W. Ordering and antiferromagnetism in ferrites. Phys. Rev. 102, 1008–1013 (1956).

    CAS  Google Scholar 

  8. 8

    Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7 . Phys. Rev. Lett. 79, 2554–2557 (1997).

    CAS  Google Scholar 

  9. 9

    Bramwell, S. T. & Gingras, M. J. P. Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 1495–1501 (2001).

    CAS  PubMed  Google Scholar 

  10. 10

    Pauling, L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935).

    CAS  Google Scholar 

  11. 11

    Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008).

    CAS  PubMed  Google Scholar 

  12. 12

    Lacroix, C., Mendels, P. & Mila, F. Introduction to Frustrated Magnetism (Springer, 2011).

    Google Scholar 

  13. 13

    Ludlow, R. F. & Otto, S. Systems chemistry. Chem. Soc. Rev. 37, 101–108 (2008).

    CAS  PubMed  Google Scholar 

  14. 14

    Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nature Nanotech. 8, 899–911 (2013).

    CAS  Google Scholar 

  15. 15

    Giblin, S. R., Bramwell, S. T., Holdsworth, P. C. W., Prabhakaran, D. & Terry, I. Creation and measurement of long-lived magnetic monopole currents in spin ice. Nature Phys. 7, 252–258 (2011).

    CAS  Google Scholar 

  16. 16

    Nakatsuji, S. et al. Spin disorder on a triangular lattice. Science 309, 1697–1700 (2005).

    CAS  PubMed  Google Scholar 

  17. 17

    Blunt, M. O. et al. Random tiling and topological defects in a two-dimensional molecular network. Science 322, 1077–1081 (2008).

    CAS  PubMed  Google Scholar 

  18. 18

    Adamson, J., Funnell, N. P., Thompson, A. L. & Goodwin, A. L. Structural investigation of a hydrogen bond order–disorder transition in a polar one-dimensional confined ice. Phys. Chem. Chem. Phys. 16, 2654–2659 (2014).

    CAS  PubMed  Google Scholar 

  19. 19

    Simonov, A., Weber, T. & Steurer, W. Experimental uncertainties of three-dimensional pair distribution function investigations exemplified on the diffuse scattering from a tris-tert-butyl-1,3,5-benzene tricarboxamide single crystal. J. Appl. Crystallogr. 47, 2011–2018 (2014).

    CAS  Google Scholar 

  20. 20

    Zeng, X. et al. Complex multicolor tilings and critical phenomena in tetraphilic liquid crystals. Science 331, 1302–1306 (2011).

    CAS  PubMed  Google Scholar 

  21. 21

    Shoemaker, D. P. et al. Atomic displacements in the charge ice pyrochlore Bi2Ti2O6O′ studied by neutron total scattering. Phys. Rev. B. 81, 144113 (2010).

    Google Scholar 

  22. 22

    Fairbank, V. E., Thompson, A. L., Cooper, R. I. & Goodwin, A. L. Charge-ice dynamics in the negative thermal expansion material Cd(CN)2 . Phys. Rev. B 86, 104113 (2012).

    Google Scholar 

  23. 23

    Whitaker, M. J. & Greaves, C. Magnetic ordering in the pyrochlore Ho2CrSbO7 determined from neutron diffraction, and the magnetic properties of other RE2CrSbO7 phases (RE=Y, Tb, Dy, Er). J. Solid State Chem. 215, 171–175 (2014).

    CAS  Google Scholar 

  24. 24

    Taroni, A. Artificial spin rotors. Nature Mater. 13, 915 (2014).

    CAS  Google Scholar 

  25. 25

    Hibble, S. J., Cheyne, S. M., Hannon, A. C. & Eversfield, S. G. Beyond Bragg scattering: the structure of AgCN determined from total neutron diffraction. Inorg. Chem. 41, 1042–1044 (2002).

    CAS  PubMed  Google Scholar 

  26. 26

    Hibble, S. J., Hannon, A. C. & Cheyne, S. M. Structure of AuCN determined from total neutron diffraction. Inorg. Chem. 42, 4724–4730 (2003).

    CAS  PubMed  Google Scholar 

  27. 27

    Chippindale, A. M. et al. Mixed copper, silver, and gold cyanides, (MxM′1–x)CN: tailoring chain structures to influence physical properties. J. Am. Chem. Soc. 134, 16387–16400 (2012).

    CAS  PubMed  Google Scholar 

  28. 28

    Sharpe, A. G. The Chemistry of Cyano Complexes of the Transition Metals (Academic, 1976).

    Google Scholar 

  29. 29

    Bowmaker, G. A., Kennedy, B. J. & Reid, J. C. Crystal structures of AuCN and AgCN and vibrational spectroscopic studies of AuCN, AgCN, and CuCN. Inorg. Chem. 37, 3968–3974 (1998).

    CAS  PubMed  Google Scholar 

  30. 30

    Jansen, M. Homoatomic d10d10 interactions: their effects on structure and chemical and physical properties. Angew. Chem. Int. Ed. Engl. 26, 1098–1110 (1987).

    Google Scholar 

  31. 31

    O'Grady, E. & Kaltsoyannis, N. Does metallophilicity increase or decrease down group 11? Computational investigations of [Cl–M–PH3]2 (M=Cu, Ag, Au, [111]). Phys. Chem. Chem. Phys. 6, 680–687 (2004).

    CAS  Google Scholar 

  32. 32

    Schmidbaur, H. & Schier, A. Argentophilic interactions. Angew. Chem. Int. Ed. 54, 746–784 (2015).

    CAS  Google Scholar 

  33. 33

    Pyykkö, P. Theoretical chemistry of gold. Angew. Chem. Int. Ed. 43, 4412–4456 (2004).

    Google Scholar 

  34. 34

    Tissier, M., Delmaotte, B. & Mouhanna, D. XY frustrated systems: continuous exponents in discontinuous phase transitions. Phys. Rev. B 67, 134422 (2003).

    Google Scholar 

  35. 35

    Okumura, S., Yoshino, H. & Kawamura, H. Spin-chirality decoupling and critical properties of a two-dimensional fully frustrated XY model. Phys. Rev. B 83, 094429 (2011).

    Google Scholar 

  36. 36

    Collins, M. F. & Petrenko, O. A. Triangular antiferromagnets. Can. J. Phys. 75, 605–655 (1997).

    CAS  Google Scholar 

  37. 37

    Keen, D. A. & Goodwin, A. L. The crystallography of correlated disorder. Nature 521, 303–309 (2015).

    CAS  PubMed  Google Scholar 

  38. 38

    Laüchli, A., Mila, F. & Penk, K. Quadrupolar phases of the S = 1 bilinear-biquadratic Heisenberg model on the triangular lattice. Phys. Rev. Lett. 97, 087205 (2006).

    PubMed  Google Scholar 

  39. 39

    Qi, K., Qin, M. H., Jia, X. T. & Liu, J.-M. Phase diagram of ferromagnetic XY model with nematic coupling on a triangular lattice. J. Magn. Magn. Mater. 340, 127–130 (2013).

    CAS  Google Scholar 

  40. 40

    Stoudenmire, E. M. & Trebst, S. & Balents, L. Quadrupolar correlations and spin freezing in S=1 triangular lattice antiferromagnets. Phys. Rev. B 79, 214436 (2009).

    Google Scholar 

  41. 41

    Mermin, N. D. & Wagner, H. Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett. 17, 1133–1136 (1966).

    CAS  Google Scholar 

  42. 42

    Kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    CAS  Google Scholar 

  43. 43

    Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    PubMed  PubMed Central  Google Scholar 

  44. 44

    Falo, F., Floria, L. M. & Navarro, R. Monte Carlo simulations of finite-size effects in Kosterlitz Thouless systems. J. Phys. Condens. Matter 1, 5139–5150 (1989).

    Google Scholar 

  45. 45

    Xu, H.-J. & Southern, B. W. Phase transitions in the classical XY antiferromagnet on the triangular lattice. J. Phys. A 29, L133–L139 (1996).

    CAS  Google Scholar 

  46. 46

    Ran, Y., Zhang, Y. & Vishwanath, A. One-dimensional topologically protected modes in topological insulators with lattice dislocations. Nature Phys. 5, 298–303 (2009).

    CAS  Google Scholar 

  47. 47

    Coudert, F.-X. Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 27, 1905–1916 (2015).

    CAS  Google Scholar 

  48. 48

    Dovesi, R. et al. CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals. Z. Krist. 220, 571–573 (2005).

    CAS  Google Scholar 

  49. 49

    Peintinger, M. F., Oliveira, D. V. & Bredow, T. Consistent Gaussian basis sets of triple-zeta valence with polarization quality for solid-state calculations. J. Comput. Chem. 34, 451–459 (2013).

    CAS  PubMed  Google Scholar 

  50. 50

    Doll, K., Pyykkö, P. & Stoll, H. Closed-shell interaction in silver and gold chlorides. J. Chem. Phys. 109, 2339–2345 (1998).

    CAS  Google Scholar 

  51. 51

    Hay, P. J. & Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299–310 (1985).

    CAS  Google Scholar 

  52. 52

    Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    CAS  Google Scholar 

  53. 53

    Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 102, 039902 (2009).

    Google Scholar 

  54. 54

    Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

A.B.C., M.J.C., J.A.M.P. and A.L.G. acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC; EP/G004528/2), the Science and Technology Facilities Council (STFC) and the European Research Council (ERC; grant ref: 279705). High-pressure synchrotron X-ray powder diffraction measurements were carried out at the I15 Beamline, Diamond Light Source, UK. Quantum chemistry calculations made use of high performance computing resources from GENCI (grant x2015087069).

Author information

Affiliations

Authors

Contributions

A.B.C., M.J.C., J.A.M.P., F.-X.C. and A.L.G. conceived and designed the study. A.B.C., D.D. and M.G.T. performed the experiments. A.B.C., M.J.C., J.A.M.P. and A.L.G. interpreted the experimental data. F.-X.C. performed and interpreted the quantum chemistry calculations. A.L.G. wrote the paper. All authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to François-Xavier Coudert or Andrew L. Goodwin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2144 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cairns, A., Cliffe, M., Paddison, J. et al. Encoding complexity within supramolecular analogues of frustrated magnets. Nature Chem 8, 442–447 (2016). https://doi.org/10.1038/nchem.2462

Download citation

Further reading