Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bimetallic Pd(III) complexes in palladium-catalysed carbon–heteroatom bond formation

A Corrigendum to this article was published on 01 August 2009

This article has been updated

Abstract

Palladium is a common transition metal for catalysis, and the fundamental organometallic reactivity of palladium in its 0, I, II and IV oxidation states is well established. The potential role of Pd(III) in catalysis has not been investigated because organometallic reactions that involve Pd(III) have not been reported previously. In this article we present the formation of carbon–heteroatom bonds from discrete bimetallic Pd(III) complexes and show the synergistic involvement of two palladium atoms of the bimetallic core during both oxidation and reductive elimination. Our results challenge the currently accepted mechanism for oxidative palladium catalysis via Pd(II)–Pd(IV) redox cycles and implicate bimetallic palladium complexes in redox catalysis. The new mechanistic insight provides an opportunity to explore rationally the potential of bimetallic palladium catalysis for synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-electron oxidation and bimetallic reductive elimination.
Figure 2: Two-electron oxidation of 1 to give Pd(III)–Pd(III) complex 2 followed by bimetallic reductive elimination.
Figure 3: Mechanistic alternatives for reductive elimination from 2.
Figure 4: Reductive elimination from esp-derived bimetallic Pd(III)Cl (8).
Figure 5: Carbon–oxygen bond formation and pre-equilibrium acetate dissociation.
Figure 6: Bimetallic palladium complexes during catalysis.
Figure 7: Proposed catalytic cycle for carbon–heteroatom bond formation via bimetallic Pd(III) complexes.

Similar content being viewed by others

Change history

  • 24 June 2009

    In the version of this article originally published, corrections were needed to some units and values of thermodynamic parameters: (1) page 303, penultimate sentence of column 1 should read: (ΔS) = −11.2 ± 9.4 cal K-1; (2) page 305, top of column 2 should read: (ΔG298 = 20.3 ± 0.1 kcal mol-1, ΔH = 23.4 ± 3.4 kcal mol-1, and ΔS = 10.2 ± 11.4 cal K-1). The authors wish to confirm that the corrections have no implications for their conclusions or the mechanistic proposal they have put forward. These changes have now been corrected on the HTML and PDF versions of this article.

References

  1. Negishi, E. Handbook of Organopalladium Chemistry for Organic Synthesis (John Wiley, 2002).

    Book  Google Scholar 

  2. Muci, A. R. & Buchwald, S. L. Practical palladium catalysts for C–N and C–O bond formation. Top. Curr. Chem. 219, 131–209 (2002).

    Article  CAS  Google Scholar 

  3. Hartwig, J. F. Carbon–heteroatom bond-forming reductive eliminations of amines, ethers, and sulfides. Acc. Chem. Res. 31, 852–860 (1998).

    Article  CAS  Google Scholar 

  4. Holloway, R. G., Penfold, B. R., Colton, R. & McCormick, M. J. Crystal and molecular structure of bis-μ-(bisdiphenylphosphinomethane)-dibromodipalladium(Pd–Pd), a compound containing palladium(I). J. Chem. Soc. Chem. Commun. 485–486 (1976).

  5. Murahashi, T. & Kurosawa, H. Organopalladium complexes containing palladium–palladium bonds. Coord. Chem. Rev. 231, 207–228 (2002).

    Article  CAS  Google Scholar 

  6. Christmann, U. et al. Experimental and theoretical investigations of new dinuclear palladium complexes as precatalysts for the amination of aryl chlorides. J. Am. Chem. Soc. 128, 6376–6390 (2006).

    Article  CAS  Google Scholar 

  7. Markert, C., Neuburger, M., Kulicke, K., Meuwly, M. & Pfaltz, A. Palladium-catalyzed allylic substitution: reversible formation of allyl-bridged dinuclear palladium(I) complexes. Angew. Chem. Int. Ed. 46, 5892–5895 (2007).

    Article  CAS  Google Scholar 

  8. Canty, A. J. Development of organopalladium(IV) chemistry: fundamental aspects and systems for studies of mechanism in organometallic chemistry and catalysis. Acc. Chem. Res. 25, 83–90 (1992).

    Article  CAS  Google Scholar 

  9. Canty, A. J., Denney, M. C., Skelton, B. W. & White, A. H. Carbon–oxygen bond formation at organopalladium centers: the reactions of PdMeR(L2) (R = Me, 4-tolyl; L2 = tmeda, bpy) with diaroyl peroxides and the involvement of organopalladium(IV) species. Organometallics 23, 1122–1131 (2004).

    Article  CAS  Google Scholar 

  10. Canty, A. J., Denney, M. C., van Koten, G., Skelton, B. W. & White, A. H. Carbon–oxygen bond formation at metal(IV) centers: reactivity of palladium(II) and platinum(II) complexes of the [2,6-(dimethylaminomethyl)phenyl-N,C,N] (pincer) ligand toward iodomethane and dibenzoyl peroxide; structural studies of M(II) and M(IV) complexes. Organometallics 23, 5432–5439 (2004).

    Article  CAS  Google Scholar 

  11. Dick, A. R., Kampf, J. W. & Sanford, M. S. Unusually stable palladium(IV) complexes: detailed mechanistic investigation of C–O bond-forming reductive elimination. J. Am. Chem. Soc. 127, 12790–12791 (2005).

    Article  CAS  Google Scholar 

  12. Whitfield, S. R. & Sanford, M. S. Reactivity of Pd(II) complexes with electrophilic chlorinating reagents: isolation of Pd(IV) products and observation of C–Cl bond-forming reductive elimination. J. Am. Chem. Soc. 129, 15142–15143 (2007).

    Article  CAS  Google Scholar 

  13. Furuya, T. & Ritter, T. Carbon–fluorine reductive elimination from a high-valent palladium fluoride. J. Am. Chem. Soc. 130, 10060–10061 (2008).

    Article  CAS  Google Scholar 

  14. Fahey, D. R. The homogeneous palladium-catalyzed ortho-chlorination of azobenzene. J. Chem. Soc. Chem. Commun. 417 (1970).

  15. Stock, L. M., Tse, K.-T., Vorvick, L. J. & Walstrum, S. A. Palladium(II) acetate catalyzed aromatic substitution reaction. J. Org. Chem. 46, 1757–1759 (1981).

    Article  CAS  Google Scholar 

  16. Yoneyama, T. & Crabtree, R. H. Pd(II) catalyzed acetoxylation of arenes with iodosyl acetate. J. Mol. Catal. A: Chem. 108, 35–40 (1996).

    Article  CAS  Google Scholar 

  17. Dick, A. R., Hull, K. L. & Sanford, M. S. A highly selective catalytic method for the oxidative functionalization of C–H bonds. J. Am. Chem. Soc. 126, 2300–2301 (2004).

    Article  CAS  Google Scholar 

  18. Kalyani, D., Deprez, N. R., Desai, L. V. & Sanford, M. S. Oxidative C–H activation/C–C bond forming reactions: synthetic scope and mechanistic insights. J. Am. Chem. Soc. 127, 7330–7331 (2005).

    Article  CAS  Google Scholar 

  19. Hull, K. L., Anani, W. Q. & Sanford, M. S. Palladium-catalyzed fluorination of carbon–hydrogen bonds. J. Am. Chem. Soc. 128, 7134–7135 (2006).

    Article  CAS  Google Scholar 

  20. Kalyani, D., Dick, A. R., Anani, W. Q. & Sanford, M. S. A simple catalytic method for the regioselective halogenation of arenes. Org. Lett. 8, 2523–2526 (2006).

    Article  CAS  Google Scholar 

  21. Dick, A. R., Kampf, J. W. & Sanford, M. S. Platinum model studies for palladium-catalyzed oxidative functionalization of C–H bonds. Organometallics 24, 482–485 (2005).

    Article  CAS  Google Scholar 

  22. Whitfield, S. R. & Sanford, M. S. Reactions of platinum(II) complexes with chloride-based oxidants: routes to Pt(III) and Pt(IV) products. Organometallics 27, 1683–1689 (2008).

    Article  CAS  Google Scholar 

  23. Hull, K. L., Lanni, E. L. & Sanford, M. S. Highly regioselective catalytic oxidative coupling reactions: synthetic and mechanistic investigations. J. Am. Chem. Soc. 128, 14047–14049 (2006).

    Article  CAS  Google Scholar 

  24. Furuya, T., Kaiser, H. M. & Ritter, T. Palladium-mediated fluorination of arylboronic acids. Angew. Chem. Int. Ed. 47, 5993–5996 (2008).

    Article  CAS  Google Scholar 

  25. Furuya, T., Strom, A. E. & Ritter, T. Silver-mediated fluorination of functionalized aryl stannanes. J. Am. Chem. Soc. 131, 1662–1663 (2009).

    Article  CAS  Google Scholar 

  26. Kalyani, D., Dick, A. R., Anani, W. Q. & Sanford, M. S. Scope and selectivity in palladium-catalyzed directed C–H bond halogenation reactions. Tetrahedron 62, 11483–11498 (2006).

    Article  CAS  Google Scholar 

  27. Cope, A. C. & Siekman, R. W. Formation of covalent bonds from platinum or palladium to carbon by direct substitution. J. Am. Chem. Soc. 87, 3272–3273 (1965).

    Article  CAS  Google Scholar 

  28. Ryabov, A. D. Cyclopalladated complexes in organic synthesis. Synthesis 233–252 (1985).

    Article  Google Scholar 

  29. Gutierrez, M. A., Newkome, G. R. & Selbin, J. Cyclometallation. Palladium 2-arylpyridine complexes. J. Organomet. Chem. 202, 341–350 (1980).

    Article  CAS  Google Scholar 

  30. Berry, J. F., Cotton, F. A., Ibragimov, S. A., Murillo, C. A. & Wang, X. P. Searching for precursors to metal–metal bonded dipalladium species: a study of Pd2(4+) complexes. Inorg. Chem. 44, 6129–6137 (2005).

    Article  CAS  Google Scholar 

  31. Cotton, F. A. et al. High yield syntheses of stable, singly bonded Pd2(6+) compounds. J. Am. Chem. Soc. 128, 13674–13675 (2006).

    Article  CAS  Google Scholar 

  32. Nambisan, P. N. K. Measurement of formal potential of iodobenzene dichloride–iodobenzene couple in glacial acetic acid. Curr. Sci. 44, 662–663 (1975).

    CAS  Google Scholar 

  33. Berry, J. F. et al. A fractional bond order of 1/2 in Pd2(5+) formamidinate species; the value of very high-field EPR spectra. J. Am. Chem. Soc. 129, 1393–1401 (2007).

    Article  CAS  Google Scholar 

  34. Bandoli, G., Caputo, P. A., Intini, F. P., Sivo, M. F. & Natile, G. Synthesis and X-ray structural characterization of two unbridged diplatinum(III) compounds: cis- and trans-bis(bis(1-imino-1-methoxyethane)trichloroplatinum(III)). Transient species in the oxidation of platinum(II) to platinum(IV). J. Am. Chem. Soc. 119, 10370–10376 (1997).

    Article  CAS  Google Scholar 

  35. Bonnington, K. J., Jennings, M. C. & Puddephatt, R. J. Oxidative addition of S–S bonds to dimethylplatinum(II) complexes: evidence for a binuclear mechanism. Organometallics 27, 6521–6530 (2008).

    Article  CAS  Google Scholar 

  36. Vigalok, A. Metal-mediated formation of carbon–halogen bonds. Chem. Eur. J. 14, 5102–5108 (2001).

    Article  Google Scholar 

  37. Roy, A. H. & Hartwig, J. F. Reductive elimination of aryl halides from palladium(II). J. Am. Chem. Soc. 123, 1232–1233 (2001).

    Article  CAS  Google Scholar 

  38. Roy, A. H. & Hartwig, J. F. Directly observed reductive elimination of aryl halides from monomeric arylpalladium(II) halide complexes. J. Am. Chem. Soc. 125, 13944–13945 (2003).

    Article  CAS  Google Scholar 

  39. Fulmer, G. R., Muller, R. P., Kemp, R. A. & Goldberg, K. I. Hydrogenolysis of palladium(II) hydroxide and methoxide pincer complexes. J. Am. Chem. Soc. 131, 1346–1347 (2009).

    Article  CAS  Google Scholar 

  40. Lee, C. L., James, B. R., Nelson, D. A. & Hallen, R. T. Kinetics and thermodynamics of the reversible reaction between carbon monoxide and palladium(I) dimers containing bis(diphenylphosphino)methane. Organometallics 3, 1360–1364 (1984).

    Article  CAS  Google Scholar 

  41. Besenyei, G., Párkányi, L., Gács-Baitz, E. & James, B. R. Crystallographic characterization of the palladium(I) dimers, syn-Pd2Cl2(dppmMe)2 and Pd2Cl2(dppm)2; solution conformational behavior of syn- and anti-Pd2Cl2(dppmMe)2 and their (µ-Se) adducts [pddmMe = µ-1,1-bis(diphenylphosphino)ethane, and dppm = µ-bis(diphenylphosphino)methane]. Inorg. Chim. Acta 327, 179–187 (2002).

    Article  CAS  Google Scholar 

  42. Espino, C. G., Fiori, K. W., Kim, M. & Du Bois, J. Expanding the scope of C–H amination through catalyst design. J. Am. Chem. Soc. 126, 15378–15379 (2004).

    Article  CAS  Google Scholar 

  43. Bickley, J., Bonar-Law, R., McGrath, T., Singh, N. & Steiner, A. Dirhodium(II) carboxylate complexes as building blocks. Cis-chelating dicarboxylic acids designed to bridge the dinuclear core. New J. Chem. 28, 425–433 (2004).

    Article  CAS  Google Scholar 

  44. Trinquier, G. & Hoffmann, R. Dinuclear reductive eliminations. Organometallics 3, 370–380 (1984).

    Article  CAS  Google Scholar 

  45. Luedtke, A. T. & Goldberg, K. I. Reductive elimination of ethane from five-coordinate platinum(IV) alkyl complexes. Inorg. Chem. 46, 8496–8498 (2007).

    Article  CAS  Google Scholar 

  46. Procelewska, J. et al. Mechanistic information on the reductive elimination from cationic trimethylplatinum(IV) complexes to form carbon–carbon bonds. Inorg. Chem. 44, 7732–7742 (2005).

    Article  CAS  Google Scholar 

  47. Ryabov, A. D. Thermodynamics, kinetics, and mechanism of exchange of cyclopalladated ligands. Inorg. Chem. 26, 1252–1260 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. A. Betley for DFT calculations, E. N. Jacobsen and D. G. Nocera, as well as I. Bae, for discussions, Merck for unrestricted support, Sanofi-Aventis for a graduate fellowship for DCP, T. Furuya, J. Y. Wu and D. M. Ho for crystallographic analysis and E. King for electrochemical analysis and DFT calculations.

Author information

Authors and Affiliations

Authors

Contributions

D.C.P. and T.R. conceived and designed the experiments, D.C.P. performed the experiments and D.C.P. and T.R. co-wrote the paper.

Corresponding author

Correspondence to Tobias Ritter.

Supplementary information

Supplementary information

Supplementary information (PDF 2772 kb)

Supplementary information

Crystallographic data for compound 1 (CIF 23 kb)

Supplementary information

Crystallographic data for compound 2 (CIF 30 kb)

Supplementary information

Crystallographic data for compound 4a (CIF 32 kb)

Supplementary information

Crystallographic data for compound 9 (CIF 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Powers, D., Ritter, T. Bimetallic Pd(III) complexes in palladium-catalysed carbon–heteroatom bond formation. Nature Chem 1, 302–309 (2009). https://doi.org/10.1038/nchem.246

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.246

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing