Designed metalloprotein stabilizes a semiquinone radical

Abstract

Enzymes use binding energy to stabilize their substrates in high-energy states that are otherwise inaccessible at ambient temperature. Here we show that a de novo designed Zn(II) metalloprotein stabilizes a chemically reactive organic radical that is otherwise unstable in aqueous media. The protein binds tightly to and stabilizes the radical semiquinone form of 3,5-di-tert-butylcatechol. Solution NMR spectroscopy in conjunction with molecular dynamics simulations show that the substrate binds in the active site pocket where it is stabilized by metal–ligand interactions as well as by burial of its hydrophobic groups. Spectrochemical redox titrations show that the protein stabilized the semiquinone by reducing the electrochemical midpoint potential for its formation via the one-electron oxidation of the catechol by approximately 400 mV (9 kcal mol−1). Therefore, the inherent chemical properties of the radical were changed drastically by harnessing its binding energy to the metalloprotein. This model sets the basis for designed enzymes with radical cofactors to tackle challenging chemistry.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Semiquinone is unstable as a free radical, but its stability can be tailored in a protein environment.
Figure 2: Observation of SQ in complex with the de novo metalloprotein [DFsc-Zn(II)2] by optical and magnetic spectroscopy.
Figure 3: Analysis of results extracted from the [DFsc-Zn(II)2]–SQ HSQC spectra colour-mapped on the [DFsc-Zn(II)2] structure (PDB 2LFD), with the relative degrees of peak intensities compared.
Figure 4: QM/MM-optimized model of [DFsc-Zn(II)2]–SQ.

Accession codes

Accessions

Protein Data Bank

References

  1. 1

    DeGrado, W. F., Summa, C. M., Pavone, V., Nastri, F. & Lombardi, A. De novo design and structural characterization of proteins and metalloproteins. Annu. Rev. Biochem. 68, 779–819 (1999).

    CAS  Article  Google Scholar 

  2. 2

    Dürrenberger, M. & Ward, T. R. Recent achievements in the design and engineering of artificial metalloenzymes. Curr. Opin. Chem. Biol. 19, 99–106 (2014).

    Article  Google Scholar 

  3. 3

    Faiella, M., Roy, A., Sommer, D. & Ghirlanda, G. De novo design of functional proteins: toward artificial hydrogenases. Biopolymers 100, 558–571 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Hill, R. B., Raleigh, D. P., Lombardi, A. & DeGrado, W. F. De novo design of helical bundles as models for understanding protein folding and function. Acc. Chem. Res. 33, 745–754 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Kaplan, J. & DeGrado, W. F. De novo design of catalytic proteins. Proc. Natl Acad. Sci. USA 101, 11566–11570 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Kiss, G., Celebi-Olcum, N., Moretti, R., Baker, D. & Houk, K. N. Computational enzyme design. Angew. Chem. Int. Ed. 52, 5700–5725 (2013).

    CAS  Article  Google Scholar 

  7. 7

    Watkins, D. W., Armstrong, C. T. & Anderson, J. L. R. De novo protein components for oxidoreductase assembly and biological integration. Curr. Opin. Chem. Biol. 19, 90–98 (2014).

    CAS  Article  Google Scholar 

  8. 8

    Zastrow, M. L. & Pecoraro, V. L. Designing functional metalloproteins: from structural to catalytic metal sites. Coord. Chem. Rev. 257, 2565–2588 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Koga, N. et al. Principles for designing ideal protein structures. Nature 491, 222–227 (2012).

    CAS  Article  Google Scholar 

  10. 10

    Lu, Y., Yeung, N., Sieracki, N. & Marshall, N. M. Design of functional metalloproteins. Nature 460, 855–862 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Petrik, I. D., Liu, J. & Lu, Y. Metalloenzyme design and engineering through strategic modifications of native protein scaffolds. Curr. Opin. Chem. Biol. 19, 67–75 (2014).

    CAS  Article  Google Scholar 

  12. 12

    Farid, T. A. et al. Elementary tetrahelical protein design for diverse oxidoreductase functions. Nature Chem. Biol. 9, 826–833 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Lichtenstein, B. R. et al. Engineering oxidoreductases: maquette proteins designed from scratch. Biochem. Soc. Trans. 40, 561–566 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Bhagi-Damodaran, A., Petrik, I. D., Marshall, N. M., Robinson, H. & Lu, Y. Systematic tuning of heme redox potentials and its effects on O2 reduction rates in a designed oxidase in myoglobin. J. Am. Chem. Soc. 136, 11882–11885 (2014).

    CAS  Article  Google Scholar 

  15. 15

    Cangelosi, V. M., Deb, A., Penner-Hahn, J. E. & Pecoraro, V. L. A de novo designed metalloenzyme for the hydration of CO2 . Angew. Chem. Int. Ed. 53, 7900–7903 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Yu, F. et al. Protein design: toward functional metalloenzymes. Chem. Rev. 114, 3495–3578 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Zastrow, M. L. & Pecoraro, V. L. Designing hydrolytic zinc metalloenzymes. Biochemistry 53, 957–978 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Song, W. J. & Tezcan, F. A. A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346, 1525–1528 (2014).

    CAS  Article  Google Scholar 

  19. 19

    Calhoun, J. R. et al. Artificial diiron proteins: from structure to function. Biopolymers 80, 264–278 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Reig, A. J. et al. Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins. Nature Chem. 4, 900–906 (2012).

    CAS  Article  Google Scholar 

  21. 21

    Pearson, A. D. et al. Trapping a transition state in a computationally designed protein bottle. Science 347, 863–867 (2015).

    CAS  Article  Google Scholar 

  22. 22

    Hay, S., Westerlund, K. & Tommos, C. Moving a phenol hyrdoxyl group from the surface to the interior of a protein: effects on the phenol potential and pKA . Biochemistry 44, 11891–11902 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Ravichandran, K. R., Liang, L., Stubbe, J. & Tommos, C. Formal reduction potential of 3,5-difluorotyrosine in a structured protein: insight into multistep radical transfer. Biochemistry 52, 8907–8915 (2013).

    CAS  Article  Google Scholar 

  24. 24

    Tommos, C., Skalicky, J. J., Pilloud, D. L., Wand, A. J. & Dutton, P. L. De novo proteins as models of radical enzymes. Biochemistry 38, 9495–9507 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Tommos, C., Valentine, K. G., Martínez-Rivera, M. C., Liang, L. & Moorman, V. R. Reversible phenol oxidation and reduction in the structurally well-defined 2-mercaptophenol-α3C protein. Biochemistry 52, 1409–1418 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Glover, S. D. et al. Photochemical tyrosine oxidation in the structurally well-defined α3Y protein: proton-coupled electron transfer and a long-lived tyrosine radical. J. Am. Chem. Soc. 136, 14039–14051 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Berry, B. W., Martínez-Rivera, M. C. & Tommos, C. Reversible voltammograms and a Pourbaix diagram for a protein tyrosine radical. Proc. Natl Acad. Sci. USA 109, 9739–9743 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Dooley, D. M. et al. A Cu(I)-semiquinone state in substrate-reduced amine oxidases. Nature 349, 262–264 (1991).

    CAS  Article  Google Scholar 

  29. 29

    Kalyanaraman, B., Felix, C. C. & Sealy, R. C. Semiquinone anion radicals of catechol(amine)s, catechol estrogens, and their metal ion complexes. Environ. Health Perspect. 64, 185–198 (1985).

    CAS  Article  Google Scholar 

  30. 30

    Land, E. J., Ramsden, C. A. & Riley, P. A. Tyrosinase autoactivation and the chemistry of ortho-quinone amines. Acc. Chem. Res. 36, 300–308 (2003).

    CAS  Article  Google Scholar 

  31. 31

    Mure, M. Tyrosine-derived quinone cofactors. Acc. Chem. Res. 37, 131–139 (2004).

    CAS  Article  Google Scholar 

  32. 32

    Peover, M. E. & Davies, J. D. The influence of ion-association in the polarography of quinones in dimethylformamide. J. Electroanal. Chem. 6, 46–53 (1963).

    CAS  Google Scholar 

  33. 33

    Chung, T. D. et al. Electrochemical behavior of calix[4]arenediquinones and their cation binding properties. J. Electroanal. Chem. 396, 431–439 (1995).

    Article  Google Scholar 

  34. 34

    Stallings, M. D., Morrison, M. M. & Sawyer, D. T. Redox chemistry of metal–catechol complexes in aprotic media. 1. Electrochemistry of substituted catechols and their oxidation products. Inorg. Chem. 20, 2655–2660 (1981).

    CAS  Article  Google Scholar 

  35. 35

    Bodini, M. E., Copia, G., Robinson, R. & Sawyer, D. T. Redox chemistry of metal–catechol complexes in aprotic media. 5. 3,5-Di-tert-butylcatecholato and 3,5-di-tert-butylsemiquinonato complexes of zinc(II). Inorg. Chem. 22, 126–129 (1983).

    CAS  Article  Google Scholar 

  36. 36

    Benelli, C., Dei, A., Gatteschi, D. & Pardi, L. Electronic and CD spectra of catecholate and semiquinonate adducts of zinc(II) and nickel(II) tetraaza macrocyclic complexes. Inorg. Chem. 28, 1476–1480 (1989).

    CAS  Article  Google Scholar 

  37. 37

    Guin, P. S., Das, S. & Mandal, P. C. Electrochemical reduction of quinones in different media: a review. Int. J. Electrochem. 2011, 1–22 (2011).

    Article  Google Scholar 

  38. 38

    Faiella, M. et al. An artificial di-iron oxo-protein with phenol oxidase activity. Nature Chem. Biol. 5, 882–884 (2009).

    CAS  Article  Google Scholar 

  39. 39

    Jovanovic, S. V., Kónya, K. & Scaiano, J. C. Redox reactions of 3,5-di-tert-butyl-1,2-benzoquinone. Implications for reversal of paper yellowing. Can. J. Chem. 73, 1803–1810 (1995).

    CAS  Article  Google Scholar 

  40. 40

    Kalyanaraman, B., Premovic, P. I. & Sealy, R. C. Semiquinone anion radicals from addition of amino acids, peptides, and proteins to quinones derived from oxidation of catechols and catecholamines. J. Biol. Chem. 262, 11080–11087 (1987).

    CAS  PubMed  Google Scholar 

  41. 41

    Tratnyek, P. G. et al. Visualizing redox chemistry: probing environmental oxidation–reduction reactions with indicator dyes. Chem. Educator 6, 172–179 (2001).

    CAS  Article  Google Scholar 

  42. 42

    Clore, G. M. & Iwahara, J. Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem. Rev. 109, 4108–4139 (2009).

    CAS  Article  Google Scholar 

  43. 43

    Otting, G. Protein NMR using paramagnetic ions. Annu. Rev. Biophys. 39, 387–405 (2010).

    CAS  Article  Google Scholar 

  44. 44

    Dapprich, S., Komáromi, I., Byun, K. S., Morokuma, K. & Frisch, M. J. A new ONIOM implementation in Gaussian 98. 1. The calculation of energies, gradients and vibrational frequencies and electric field derivatives. J. Mol. Struct. (Theochem) 462, 1–21 (1999).

    Article  Google Scholar 

  45. 45

    Shiba, T. et al. Structure of the trypanosome cyanide-insensitive alternative oxidase. Proc. Natl Acad. Sci. USA 110, 4580–4585 (2013).

    CAS  Article  Google Scholar 

  46. 46

    Herbst, R. M. & Shemin, D. Acetylglycine. Org. Synth. Coll. 2, 1 (1943).

    Google Scholar 

  47. 47

    Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 3, 277–293 (1995).

    Google Scholar 

  48. 48

    SPARKY 3 (University of California, San Francisco).

  49. 49

    Dutton, P. L. Redox potentiometry: determination of midpoint potentials of oxidation–reduction components of biological electron-transfer systems. Methods Enzymol. 54, 411–435 (1978).

    CAS  Article  Google Scholar 

  50. 50

    The PyMOL Molecular Graphics System, Version 1.3r1 (Schrödinger, LLC, 2010).

Download references

Acknowledgements

We thank R. Cooke and N. Naber for access to the EPR instrument, and for valuable discussions and advice. We thank M. Bhate for help in the initial NMR data collections, and M. Stenta for useful advice on setting up the molecular modelling. This work was supported in part by grant No. GM54616 and grant No. GM071628 from the National Institutes of Health to W.F.D. We also acknowledge support from the National Science Foundation (NSF) grant CHE 1413295 and the Materials Research Science and Engineering Centers program of the NSF, grant DMR-1120901. T.L. acknowledges support from the Swiss National Foundation of Science Fellowship 148914.

Author information

Affiliations

Authors

Contributions

G.U. and W.F.D. conceived and designed the research. G.U. and W.F.D. wrote the manuscript. G.U. prepared the samples and reagents and performed the research. G.U. and G.T.G. designed and conducted the spectrochemical redox titration experiments. T.L. designed and performed the QM/MM molecular modelling. Y.W. recorded and analysed NMR data. T.L. and Y.W. contributed equally to this work.

Corresponding author

Correspondence to William F. DeGrado.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 11544 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ulas, G., Lemmin, T., Wu, Y. et al. Designed metalloprotein stabilizes a semiquinone radical. Nature Chem 8, 354–359 (2016). https://doi.org/10.1038/nchem.2453

Download citation

Further reading