Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage

Abstract

The hollow cavities of coordination cages can provide an environment for enzyme-like catalytic reactions of small-molecule guests. Here, we report a new example (catalysis of the Kemp elimination reaction of benzisoxazole with hydroxide to form 2-cyanophenolate) in the cavity of a water-soluble M8L12 coordination cage, with two features of particular interest. First, the rate enhancement is among the largest observed to date: at pD 8.5, the value of kcat/kuncat is 2 × 105, due to the accumulation of a high concentration of partially desolvated hydroxide ions around the bound guest arising from ion-pairing with the 16+ cage. Second, the catalysis is based on two orthogonal interactions: (1) hydrophobic binding of benzisoxazole in the cavity and (2) polar binding of hydroxide ions to sites on the cage surface, both of which were established by competition experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the host cage [Co8L12](BF4)16.
Figure 2: The Kemp elimination reaction.
Figure 3: pD dependence of reaction rate constants.
Figure 4: Crystal structure of the cage–benzisoxazole complex.
Figure 5: Cartoon of the catalytic reaction cycle.
Figure 6: Demonstration of catalytic turnover with the cage catalyst.

Similar content being viewed by others

References

  1. Ward, M. D. & Raithby, P. R. Functional behaviour from controlled self-assembly: challenges and prospects. Chem. Soc. Rev. 42, 1619–1636 (2013).

    Article  CAS  Google Scholar 

  2. Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418–3438 (2009).

    Article  CAS  Google Scholar 

  3. Zarra, S., Wood, D. M., Roberts, D. A. & Nitschke, J. R. Molecular containers in complex chemical systems. Chem. Soc. Rev. 44, 419–432 (2015).

    Article  CAS  Google Scholar 

  4. Cram, D. J., Tanner, M. E. & Thomas, R. The taming of cyclobutadiene. Angew. Chem. Int. Ed. Engl. 30, 1024–1027 (1991).

    Article  Google Scholar 

  5. Yoshizawa, M., Kusukawa, T., Fujita, M., Sakamoto, S. & Yamaguchi, K. Cavity-directed syntheses of labile silanol oligomers within self-assembled coordination cages. J. Am. Chem. Soc. 123, 10454–10459 (2001).

    Article  CAS  Google Scholar 

  6. Mal, P., Breiner, B., Rissanen, K. & Nitschke, J. R. White phosphorus is stable within a self-assembled tetrahedral capsule. Science 324, 1697–1699 (2009).

    Article  CAS  Google Scholar 

  7. Yoshizawa, M., Tamura, M. & Fujita, M. Diels–Alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis. Science 312, 251–254 (2006).

    Article  CAS  Google Scholar 

  8. Brown, C. J., Toste, F. D., Bergman, R. G. & Raymond, K. N. Supramolecular catalysis in metal–ligand cluster hosts. Chem. Rev. 115, 3012–3035 (2015).

    Article  CAS  Google Scholar 

  9. Rivera, J. M., Martin, T. & Rebek, J. Jr. Chiral softballs: synthesis and molecular recognition properties. J. Am. Chem. Soc. 123, 5213–5220 (2001).

    Article  CAS  Google Scholar 

  10. Kusukawa, T. & Fujita, M. Encapsulation of large, neutral molecules in a self-assembled nanocage incorporating six palladium(II) ions. Angew. Chem. Int. Ed. Engl. 37, 3142–3144 (1998).

    Article  CAS  Google Scholar 

  11. Chakrabarty, R., Mukherjee, P. S. & Stang, P. J. Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111, 6810–6918 (2011).

    Article  CAS  Google Scholar 

  12. Cook, T. R., Zheng, Y.-R. & Stang, P. J. Metal–organic frameworks and self-assembled coordination complexes: comparing and contrasting the design, synthesis and functionality of metal–organic materials. Chem. Rev. 113, 734–777 (2013).

    Article  CAS  Google Scholar 

  13. Cullen, W., Turega, S., Hunter, C. A. & Ward, M. D. Virtual screening for high affinity guests for synthetic supramolecular receptors. Chem. Sci. 6, 2790–2794 (2015).

    Article  CAS  Google Scholar 

  14. Kang, J. & Rebek, J. Jr. Acceleration of a Diels–Alder reaction by a self-assembled molecular capsule. Nature 385, 50–52 (1997).

    Article  CAS  Google Scholar 

  15. Hooley, R. J. & Rebek, J. Jr. A deep cavitand catalyzes the Diels–Alder reaction of bound maleimides. Org. Biomol. Chem. 5, 3631–3636 (2007).

    Article  CAS  Google Scholar 

  16. Kang, J., Santamaria, J., Hilmersson, G. & Rebek, J. Jr. Self-assembled molecular capsule catalyzes a Diels–Alder reaction. J. Am. Chem. Soc. 120, 7389–7390 (1998).

    Article  CAS  Google Scholar 

  17. Fiedler, D., van Halbeek, H., Bergman, R. G. & Raymond, K. N. Supramolecular catalysis of unimolecular rearrangements: substrate scope and mechanistic insights. J. Am. Chem. Soc. 128, 10240–10252 (2006).

    Article  CAS  Google Scholar 

  18. Pluth, M. D., Bergman, R. G. & Raymond, K. N. Acid catalysis in basic solution: a supramolecular host promotes orthoformate hydrolysis. Science 316, 85–88 (2007).

    Article  CAS  Google Scholar 

  19. Hooley, R. J., Biros, S. M. & Rebek, J. Jr. A deep water-soluble cavitand acts as a phase-transfer catalyst for hydrophobic species. Angew. Chem. Int. Ed. 45, 3517–3519 (2006).

    Article  CAS  Google Scholar 

  20. Murase, T., Nishijima, Y. & Fujita, M. Cage-catalyzed Knoevenagel condensation under neutral conditions in water. J. Am. Chem. Soc. 134, 162–164 (2011).

    Article  Google Scholar 

  21. Bolliger, J. L., Belenguer, A. M. & Nitschke, J. R. Enantiopure water-soluble Fe4L6 cages: host–guest chemistry and catalytic activity. Angew. Chem. Int. Ed. 52, 7958–7962 (2013).

    Article  CAS  Google Scholar 

  22. Hastings, C. J., Pluth, M. D., Bergman, R. G. & Raymond, K. N. Enzymelike catalysis of the Nazarov cyclization by supramolecular encapsulation. J. Am. Chem. Soc. 132, 6938–6940 (2010).

    Article  CAS  Google Scholar 

  23. Whitehead, M., Turega, S., Stephenson, A., Hunter, C. A. & Ward, M. D. Quantification of solvent effects on molecular recognition in polyhedral coordination cage hosts. Chem. Sci. 4, 2744–2751 (2013).

    Article  CAS  Google Scholar 

  24. Tidmarsh, I. S. et al. Octanuclear cubic coordination cages. J. Am. Chem. Soc. 130, 15167–15175 (2008).

    Article  CAS  Google Scholar 

  25. Ward, M. D. Polynuclear coordination cages. Chem. Commun. 4487–4499 (2009).

  26. Turega, S., Cullen, W., Whitehead, M., Hunter, C. A. & Ward, M. D. Mapping the internal recognition surface of an octanuclear coordination cage using guest libraries. J. Am. Chem. Soc. 136, 8475–8483 (2014).

    Article  CAS  Google Scholar 

  27. Cullen, W., Turega, S., Hunter, C. A. & Ward, M. D. pH-dependent binding of guests in the cavity of a polyhedral coordination cage: reversible uptake and release of drug molecules. Chem. Sci. 6, 625–631 (2015).

    Article  CAS  Google Scholar 

  28. Cullen, W., Thomas, K. A., Hunter, C. A. & Ward, M. D. pH-controlled selection between one of three guests from a mixture using a coordination cage host. Chem. Sci. 6, 4025–4028 (2015).

    Article  CAS  Google Scholar 

  29. Casey, M. L., Kemp, D. S., Paul, K. G. & Cox, D. D. Physical organic chemistry of benzisoxazoles. 1. Mechanism of the base-catalyzed decomposition of benzisoxazoles. J. Org. Chem. 38, 2294–2301 (1973).

    Article  CAS  Google Scholar 

  30. Kemp, D. S. & Casey, M. L. Physical organic chemistry of benzisoxazoles. 2. Linearity of the Brønsted free energy relationship for the base-catalyzed decomposition of benzisoxazoles. J. Am. Chem. Soc. 95, 6670–6680 (1973).

    Article  CAS  Google Scholar 

  31. Röthlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008).

    Article  Google Scholar 

  32. Klijn, J. E. & Engberts, J. B. F. N. Kemp elimination in membrane mimetic reaction media: probing catalytic properties of catanionic vesicles formed from double-tailed amphiphiles. J. Am. Chem. Soc. 125, 1825–1833 (2003).

    Article  CAS  Google Scholar 

  33. Hollfelder, F., Kirby, A. J. & Tawfik, D. S. On the magnitude and specificity of medium effects in enzyme-like catalysts for proton transfer. J. Org. Chem. 66, 5866–5874 (2011).

    Article  Google Scholar 

  34. Pérez-Juste, J., Hollfelder, F., Kirby, A. J. & Engberts, J. B. F. N. Vesicles accelerate proton transfer from carbon up to 850-fold. Org. Lett. 2, 127–130 (2000).

    Article  Google Scholar 

  35. Zhao, Y. et al. Anion-π catalysis. J. Am. Chem. Soc. 136, 2101–2111 (2014).

    Article  CAS  Google Scholar 

  36. Blomberg, R. et al. Precision is essential for efficient catalysis in an evolved Kemp eliminase. Nature 503, 418–421 (2013).

    Article  CAS  Google Scholar 

  37. Turega, S. et al. Shape-, size- and functional group-selective binding of small organic guests in a paramagnetic coordination cage. Inorg. Chem. 52, 112–132 (2013).

    Article  Google Scholar 

  38. Buurma, N. Kinetic medium effects on organic reactions. Adv. Phys. Org. Chem. 43, 1–37 (2009).

    CAS  Google Scholar 

  39. García-Río, L ., Herves, P., Leis, J. R., Mejuto, J. C. & Perez-Juste, J. Hydrolysis of N-methyl-N-nitroso-p-toluenesulphonamide in micellar media. J. Phys. Org. Chem. 11, 584–588 (1998).

    Article  Google Scholar 

  40. Pluth, M. D., Bergman, R. G. & Raymond, K. N. The acid hydrolysis mechanism of acetals catalyzed by a supramolecular assembly in basic solution. J. Org. Chem. 74, 58–63 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC).

Author information

Authors and Affiliations

Authors

Contributions

W.C. performed the synthesis, crystallography and most of the experimental measurements. M.C.M. helped to design the experiment and performed some of the initial experimental measurements. C.A.H., N.H.W. and M.D.W. jointly conceived and designed the experiments, analysed the results and wrote the manuscript.

Corresponding authors

Correspondence to Christopher A. Hunter, Nicholas H. Williams or Michael D. Ward.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2001 kb)

Supplementary information

Crystallographic data for [Co8(Lw)12](BF4)16(C7H5NO) (CIF 157 kb)

Supplementary information

Structure factors for [Co8(Lw)12](BF4)16(C7H5NO) (FCF 1246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cullen, W., Misuraca, M., Hunter, C. et al. Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage. Nature Chem 8, 231–236 (2016). https://doi.org/10.1038/nchem.2452

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2452

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing