Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks

Abstract

Covalent organic frameworks (COFs) formed by connecting multidentate organic building blocks through covalent bonds provide a platform for designing multifunctional porous materials with atomic precision. As they are promising materials for applications in optoelectronics, they would benefit from a maximum degree of long-range order within the framework, which has remained a major challenge. We have developed a synthetic concept to allow consecutive COF sheets to lock in position during crystal growth, and thus minimize the occurrence of stacking faults and dislocations. Hereby, the three-dimensional conformation of propeller-shaped molecular building units was used to generate well-defined periodic docking sites, which guided the attachment of successive building blocks that, in turn, promoted long-range order during COF formation. This approach enables us to achieve a very high crystallinity for a series of COFs that comprise tri- and tetradentate central building blocks. We expect this strategy to be transferable to a broad range of customized COFs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The self-repeating lock-and-key motif of propeller-shaped building blocks.
Figure 2: Synthetic scheme for the construction of the imine-linked COFs that comprise propeller-shaped building blocks.
Figure 3: PXRD patterns and the corresponding Rietveld-refined structures illustrate the high degree of order within the 4PE-based COF networks.
Figure 4: Fragment of the 4PE-2P COF structure.
Figure 5: Porosity and real-space images of the 4PE-based COFs.

Similar content being viewed by others

References

  1. Doonan, C. J., Tranchemontagne, D. J., Glover, T. G., Hunt, J. R. & Yaghi, O. M. Exceptional ammonia uptake by a covalent organic framework. Nature Chem. 2, 235–238 (2010).

    Article  CAS  Google Scholar 

  2. Rabbani, M. G. et al. A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications. Chem. Eur. J. 19, 3324–3328 (2013).

    Article  CAS  Google Scholar 

  3. Ding, S.-Y. et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 133, 19816–19822 (2011).

    Article  CAS  Google Scholar 

  4. Dogru, M. et al. A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angew. Chem. Int. Ed. 52, 2920–2924 (2013).

    Article  CAS  Google Scholar 

  5. Calik, M. et al. Extraction of photogenerated electrons and holes from a covalent organic framework integrated heterojunction. J. Am. Chem. Soc. 136, 17802–17807 (2014).

    Article  CAS  Google Scholar 

  6. Patwardhan, S., Kocherzhenko, A. A., Grozema, F. C. & Siebbeles, L. D. A. Delocalization and mobility of charge carriers in covalent organic frameworks. J. Phys. Chem. C 115, 11768–11772 (2011).

    Article  CAS  Google Scholar 

  7. Jin, S. et al. Charge dynamics in a donor–acceptor covalent organic framework with periodically ordered bicontinuous heterojunctions. Angew. Chem. Int. Ed. 52, 2017–2021 (2013).

    Article  CAS  Google Scholar 

  8. Bertrand, G. H. V., Michaelis, V. K., Ong, T.-C., Griffin, R. G. & Dinca, M. Thiophene-based covalent organic frameworks. Proc. Natl Acad. Sci. USA 110, 4923–4928 (2013).

    Article  CAS  Google Scholar 

  9. Côte, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  Google Scholar 

  10. Spitler, E. L. & Dichtel, W. R. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nature Chem. 2, 672–677 (2010).

    Article  CAS  Google Scholar 

  11. Dogru, M., Sonnauer, A., Gavryushin, A., Knochel, P. & Bein, T. A covalent organic framework with 4 nm open pores. Chem. Commun. 47, 1707–1709 (2011).

    Article  CAS  Google Scholar 

  12. Spitler, E. L. et al. Lattice expansion of highly oriented 2D phthalocyanine covalent organic framework films. Angew. Chem. Int. Ed. 51, 2623–2627 (2012).

    Article  CAS  Google Scholar 

  13. Medina, D. D. et al. Oriented thin films of a benzodithiophene covalent organic framework. ACS Nano 8, 4042–4052 (2014).

    Article  CAS  Google Scholar 

  14. Medina, D. D. et al. Room temperature synthesis of covalent−organic framework films through vapor-assisted conversion. J. Am. Chem. Soc. 137, 1016–1019 (2015).

    Article  CAS  Google Scholar 

  15. Uribe-Romo, F. J. et al. A crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc. 131, 4570–4571 (2009).

    Article  CAS  Google Scholar 

  16. Wan, S. et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 23, 4094–4097 (2011).

    Article  CAS  Google Scholar 

  17. Guo, J. et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nature Commun. 4, 2736 (2013).

    Article  Google Scholar 

  18. Fang, Q. et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nature Commun. 5, 4503 (2014).

    Article  Google Scholar 

  19. Jackson, K. T., Reich, T. E. & El-Kaderi, H. M. Targeted synthesis of a porous borazine-linked covalent organic framework. Chem. Commun. 48, 8823–8825 (2012).

    Article  CAS  Google Scholar 

  20. Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450–3453 (2008).

    Article  CAS  Google Scholar 

  21. Zhang, Y.-B. et al. Single-crystal structure of a covalent organic framework. J. Am. Chem. Soc. 135, 16336–16339 (2013).

    Article  CAS  Google Scholar 

  22. Jones, J. T. A. et al. Modular and predictable assembly of porous organic molecular crystals. Nature 474, 367–371 (2011).

    Article  CAS  Google Scholar 

  23. Kandambeth, S. et al. Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds. Angew. Chem. Int. Ed. 52, 13052–13056 (2013).

    Article  CAS  Google Scholar 

  24. Shinde, D. B., Kandambeth, S., Pachfule, P., Kumar, R. R. & Banerjee, R. Bifunctional covalent organic frameworks with two dimensional organocatalytic micropores. Chem. Commun. 51, 310–313 (2014).

    Article  Google Scholar 

  25. Spitler, E. L. et al. A 2D covalent organic framework with 4.7-nm pores and insight into its interlayer stacking. J. Am. Chem. Soc. 133, 19416–19421 (2011).

    Article  CAS  Google Scholar 

  26. Dogru, M. & Bein, T. On the road towards electroactive covalent organic frameworks. Chem. Commun. 50, 5531–5546 (2014).

    Article  CAS  Google Scholar 

  27. Zhou, T.-Y., Xu, S.-Q., Wen, Q., Pang, Z.-F. & Zhao, X. One-step construction of two different kinds of pores in a 2D covalent organic framework. J. Am. Chem. Soc. 136, 15885–15888 (2014).

    Article  CAS  Google Scholar 

  28. Hasell, T., Schmidtmann, M., Stone, C. A., Smith, M. W. & Cooper, A. I. Reversible water uptake by a stable imine-based porous organic cage. Chem. Commun. 48, 4689–4691 (2012).

    Article  CAS  Google Scholar 

  29. Clark, S. J. et al. First principles methods using CASTEP. Z. Kristallogr. 220, 567–570 (2005).

    CAS  Google Scholar 

  30. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  31. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  32. McNellis, E. R., Meyer, J. & Reuter, K. Azobenzene at coinage metal surfaces: role of dispersive van der Waals interactions. Phys. Rev. B 80, 205414 (2009).

    Article  Google Scholar 

  33. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 073005 (2009).

    Article  Google Scholar 

  34. Sing, K. S. W. et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619 (1985).

    Article  CAS  Google Scholar 

  35. Thommes, M. Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 82, 1059–1073 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for funding from the German Science Foundation (Research Cluster Nanosystems Initiative Munich) and the Free State of Bavaria (Research Network SolTech). The research leading to these results received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement 321339. This research used beamlines 11-BM and 11-ID-B at the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

L.A., T.S. and F.A. conceived and designed the project. L.A., T.S., M.C. and F.A. carried out the syntheses and characterized the materials. C.H. performed the single-crystal analysis. S.H.L. and K.W.C. performed the synchrotron X-ray scattering measurements and analysed the data. J.T.M. and T.C. carried out the theoretical simulations. M.D. carried out the TEM characterization. L.A. and F.A. wrote the manuscript. F.A. and T.B. supervised the project. All the authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Florian Auras or Thomas Bein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3033 kb)

Supplementary information

Crystallographic data for compound 2 (CIF 801 kb)

Supplementary information

Structure factors file for compound 2 (FCF 453 kb)

Supplementary information

Crystallographic data obtained by Rietveld refinement for the 4PE-1P COF (CIF 2 kb)

Supplementary information

Crystallographic data obtained by Rietveld refinement for the 4PE-2P COF (CIF 2 kb)

Supplementary information

Crystallographic data obtained by Rietveld refinement for the 4PE-3P COF (CIF 3 kb)

Supplementary information

Crystallographic data obtained by Rietveld refinement for the 4PE-TT COF (CIF 2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ascherl, L., Sick, T., Margraf, J. et al. Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks. Nature Chem 8, 310–316 (2016). https://doi.org/10.1038/nchem.2444

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2444

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing