Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An antibacterial vaccination strategy based on a glycoconjugate containing the core lipopolysaccharide tetrasaccharide Hep2Kdo2

Abstract

Certain non-mammalian cell wall sugars are conserved across a variety of pathogenic bacteria. This conservation of structure, combined with their structural differences when compared with mammalian sugars, make them potentially powerful epitopes for immunization. Here, we report the synthesis of a glycoconjugate that displays the so-called ‘inner core’ sugars of Gram-negative bacterial cell walls. We also describe an antibacterial vaccination strategy based on immunization with the glycoconjugate and the subsequent administration of an inhibitor that uncovers the corresponding epitope in pathogenic bacteria. The core tetrasaccharide, Hep2Kdo2, a common motif in bacterial lipopolysaccharides, was synthesized and attached via a chain linker to a diphtheria toxin mutant carrier protein. This glycoconjugate generated titres of antibodies towards the inner core tetrasaccharide of the lipopolysaccharide, which were capable of binding the cell-surface sugars of bacterial pathogenic strains including Neisseria meningitidis, Pseudomonas aeruginosa and Escherichia coli. Exposure of bacterial lipopolysaccharide in in vitro experiments, using an inhibitor of capsular polysaccharide transport, enabled potent bacterial killing with antiserum.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The target core tetrasaccharide of the lipooligosaccharide (LOS) of Gram-negative bacteria.
Figure 2: Design of glycoconjugate with the core tetrasaccharide of the LOS of Gram-negative bacteria.
Figure 3: Synthesis of glycoconjugate vaccine 1.
Figure 4: Mass spectrometric (MALDI-TOF) analysis of glycoconjugate 1.
Figure 5: Immune responses and antibacterial activity from the putative vaccine glycoconjugate 1.

Similar content being viewed by others

References

  1. ECDC. Antimicrobial Resistance Surveillance in Europe. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) (European Centre for Disease Prevention and Control, 2011); http://ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-surveillance-europe-2011.pdf.

  2. Mishra, R. P., Oviedo-Orta, E., Prachi, P., Rappuoli, R. & Bagnoli, F. Vaccines and antibiotic resistance. Curr. Opin. Microbiol. 15, 596–602 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Rappuoli, R., Mandl, C. W., Black, S. & De Gregorio, E. Vaccines for the twenty-first century society. Nature Rev. Immunol. 11, 865–872 (2011).

    Article  CAS  Google Scholar 

  4. Livermore, D. M. Fourteen years in resistance. Int. J. Antimicrob. Agents 39, 283–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Yang, Y., Martin, C. E. & Seeberger, P. H. Total synthesis of the core tetrasaccharide of Neisseria meningitidis lipopolysaccharide, a potential vaccine candidate for meningococcal diseases. Chem. Sci. 3, 896–899 (2012).

    Article  CAS  Google Scholar 

  6. Cox, A. et al. Investigating the candidacy of LPS-based glycoconjugates to prevent invasive meningococcal disease: immunology of glycoconjugates with high carbohydrate loading. Glycoconjugate J. 27, 643–648 (2010).

    Article  CAS  Google Scholar 

  7. Gidney, M. A. et al. Development, characterization, and functional activity of a panel of specific monoclonal antibodies to inner core lipopolysaccharide epitopes in Neisseria meningitidis. Infect. Immun. 72, 559–569 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Parker, M. J. et al. Structural basis for selective cross-reactivity in a bactericidal antibody against inner core lipooligosaccharide from Neisseria meningitidis. Glycobiology 24, 442–449 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Rahman, M. M., Kahler, C. M., Stephens, D. S. & Carlson, R. W. The structure of the lipooligosaccharide (LOS) from the α-1,2-N-acetyl glucosamine transferase (rfaKNMB) mutant strain CMK1 of Neisseria meningitidis: implications for LOS inner core assembly and LOS-based vaccines. Glycobiology 11, 703–709 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Gorringe, A. R. et al. Phase I safety and immunogenicity study of a candidate meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles. Clin. Vaccine Immunol. 16, 1113–1120 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jakel, A. et al. Naturally-occurring human serum antibodies to inner core lipopolysaccharide epitopes of Neisseria meningitidis protect against invasive meningococcal disease caused by isolates displaying homologous inner core structures. Vaccine 26, 6655–6663 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Findlow, J. et al. Multicenter, open-label, randomized phase II controlled trial of an investigational recombinant Meningococcal serogroup B vaccine with and without outer membrane vesicles, administered in infancy. Clin. Infect. Dis. 51, 1127–1137 (2010).

    Article  PubMed  Google Scholar 

  13. Seib, K. L. et al. Factor H-binding protein is important for meningococcal survival in human whole blood and serum and in the presence of the antimicrobial peptide LL-37. Infect. Immun. 77, 292–299 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Findlow, J. et al. Comparison and correlation of Neisseria meningitidis serogroup B immunologic assay results and human antibody responses following three doses of the Norwegian meningococcal outer membrane vesicle vaccine MenBvac. Infect. Immun. 74, 4557–4565 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lucidarme, J. et al. Characterization of fHbp, nhba (gna2132), nadA, porA, sequence type (ST), and genomic presence of IS1301 in group B meningococcal ST269 clonal complex isolates from England and Wales. J. Clin. Microbiol. 47, 3577–3585 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Klein, G., Lindner, B., Brade, H. & Raina, S. Molecular basis of lipopolysaccharide heterogeneity in Escherichia coli: envelope stress-responsive regulators control the incorporation of glycoforms with a third 3-deoxy-alpha-D-manno-oct-2-ulosonic acid and rhamnose. J. Biol. Chem. 286, 42787–42807 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kohler, T., Donner, V. & van Delden, C. Lipopolysaccharide as shield and receptor for R-pyocin-mediated killing in Pseudomonas aeruginosa. J. Bacteriol. 192, 1921–1928 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pizza, M. et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816–1820 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Lam, J. S., Taylor, V. L., Islam, S. T., Hao, Y. & Kocincova, D. Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front. Microbiol. 2, 118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brabetz, W., Muller-Loennies, S., Holst, O. & Brade, H. Deletion of the heptosyltransferase genes rfaC and rfaF in Escherichia coli K-12 results in an Re-type lipopolysaccharide with a high degree of 2-aminoethanol phosphate substitution. Eur. J. Biochem. 247, 716–724 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Dasgupta, T. et al. Characterization of lipopolysaccharide-deficient mutants of Pseudomonas aeruginosa derived from serotypes O3, O5, and O6. Infect. Immun. 62, 809–817 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gu, X. X. et al. Synthesis, characterization, and immunologic properties of detoxified lipooligosaccharide from nontypeable Haemophilus influenzae conjugated to proteins. Infect. Immun. 64, 4047–4053 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Paulsen, H., Stiem, M. & Unger, F. M. Synthese eines 3-desoxy-D-manno-2-octulosonsäure(KDO)-haltigen tetrasaccharides und dessen strukturvergleich mit einem abbau- produkt aus bakterien-lipopolysacchariden. Tetrahedron Lett. 27, 1135–1138 (1986).

    Article  CAS  Google Scholar 

  24. Boons, G. J. P. H., van Delft, F. L., van der Klein, P. A. M., van der Marel, G. A. & van Boom, J. H. Synthesis of LD-Hepp and KDO containing di- and tetrasaccharide derivatives of Neisseria meningitidis inner-core region via iodonium ion promoted glycosidations. Tetrahedron 48, 885–904 (1992).

    Article  CAS  Google Scholar 

  25. Bernlind, C. & Oscarson, S. Synthesis of L-glycero-D-manno-heptopyranose-containing oligosaccharide structures found in lipopolysaccharides from Haemophilus influenzae. Carbohydr. Res. 297, 251–260 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Yang, Y., Martin, C. E. & Seeberger, P. H. Total synthesis of the core tetrasaccharide of Neisseria meningitidis lipopolysaccharide, a potential vaccine candidate for meningococcal diseases. Chem. Sci. 3, 896–899 (2012).

    Article  CAS  Google Scholar 

  27. Kong, L. et al. Single-molecule interrogation of a bacterial sugar transporter allows the discovery of an extracellular inhibitor. Nature Chem. 5, 651–659 (2013).

    Article  CAS  Google Scholar 

  28. Seeberger, P. H. Automated oligosaccharide synthesis. Chem. Soc. Rev. 37, 19–28 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Hsu, C.-H., Hung, S.-C., Wu, C.-Y. & Wong, C.-H. Toward automated oligosaccharide synthesis. Angew. Chem. Int. Ed. 50, 11872–11923 (2011).

    Article  CAS  Google Scholar 

  30. Lowary, T. L. Context and complexity: the next big thing in synthetic glycobiology. Curr. Opin. Chem. Biol. 17, 990–996 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, L. X. & Davis, B. G. Realizing the promise of chemical glycobiology. Chem. Sci. 4, 3381–3394 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Boltje, T. J. et al. Chemical synthesis and immunological evaluation of the inner core oligosaccharide of Francisella tularensis. J. Am. Chem. Soc. 134, 14255–14262 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang, Y., Oishi, S., Martin, C. E. & Seeberger, P. H. Diversity-oriented synthesis of inner core oligosaccharides of the lipopolysaccharide of pathogenic Gram-negative bacteria. J. Am. Chem. Soc. 135, 6262–6271 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Anish, C., Guo, X., Wahlbrink, A. & Seeberger, P. H. Plague detection by anti-carbohydrate antibodies. Angew. Chem. Int. Ed. 52, 9524–9528 (2013).

    Article  CAS  Google Scholar 

  35. Kosma, P., Hofinger, A., Muller-Loennies, S. & Brade, H. Synthesis of a neoglycoconjugate containing a Chlamydophila psittaci-specific branched Kdo trisaccharide epitope. Carbohydr. Res. 345, 704–708 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Boltje, T. J., Kim, J. H., Park, J. & Boons, G. J. Chiral-auxiliary-mediated 1,2-cis-glycosylations for the solid-supported synthesis of a biologically important branched α-glucan. Nature Chem. 2, 552–557 (2010).

    Article  CAS  Google Scholar 

  37. Matsuo, I., Isomura, M., Miyazaki, T., Sakakibara, T. & Ajisaka, K. Chemoenzymatic synthesis of the branched oligosaccharides which correspond to the core structures of N-linked sugar chains. Carbohydr. Res. 305, 401–413 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt, R. R. New methods for the synthesis of glycosides and oligosaccharides—are there alternatives to the Koenigs–Knorr method?. Angew. Chem. Int. Ed. Engl 25, 212–235 (1986).

    Article  Google Scholar 

  39. Van der Klein, P. A. M., Boons, G. J. P. H., Veeneman, G. H., van der Marel, G. A. & van Boom, J. H. An efficient route to 3-deoxy-D-manno-2-octulosonic acid (KDO) derivatives via a 1,4-cyclic sulfate approach. Tetrahedron Lett. 30, 5477–5480 (1989).

    Article  CAS  Google Scholar 

  40. Segerstedt, E., Mannerstedt, K., Johansson, M. & Oscarson, S. Synthesis of the branched trisaccharide L-glycero-α-D-manno-heptopyranosyl-(1→3)-[β-D-glucopyranosyl-(1→4)]-L-glycero-α-D-manno-heptopyranose, protected to allow flexible access to Neisseria and Haemophilus LPS inner core structures. J. Carbohydr. Chem. 23, 443–452 (2004).

    Article  CAS  Google Scholar 

  41. Dasser, M., Chretien, F. & Chapleur, Y. A facile and stereospecific synthesis of L-glycero-D-manno-heptose and some derivatives. J. Chem. Soc. Perkin Trans. 1, 3091–3094 (1990).

    Article  Google Scholar 

  42. Paulsen, H., Schüller, M., Heitmann, A., Nashed, M. A. & Redlich, H. Verzweigte und kettenverlängerte Zucker, XXX: Diastereoselektive Synthese von L-glycero-D-manno-heptose, einem Baustein der inneren Core-Region von Lipopolysacchariden. Liebigs Annalen der Chemie 1986, 675–686 (1986).

    Article  Google Scholar 

  43. Paulsen, H. H. & Axel, C. Synthese von Strukturen der inneren Core-Region von Lipopolysacchariden. Liebigs Annalen de Chemie 1988, 1061–1071 (1988).

    Article  Google Scholar 

  44. Lukasiewicz, J., Niedziela, T., Jachymek, W., Kenne, L. & Lugowski, C. Two Kdo-heptose regions identified in Hafnia alvei 32 lipopolysaccharide: the complete core structure and serological screening of different Hafnia O serotypes. J. Bacteriol. 191, 533–544 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Patel, M. K. et al. Analysis of the dispersity in carbohydrate loading of synthetic glycoproteins using MALDI-TOF mass spectrometry. Chem. Commun. 46, 9119–9121 (2010).

    Article  CAS  Google Scholar 

  46. Kimura, Y., Saito, M., Kimata, Y. & Kohno, K. Transgenic mice expressing a fully nontoxic diphtheria toxin mutant, not CRM197 mutant, acquire immune tolerance against diphtheria toxin. J. Biochem. (Tokyo) 142, 105–112 (2007).

    Article  CAS  Google Scholar 

  47. Shinefield, H. R. Overview of the development and current use of CRM197 conjugate vaccines for pediatric use. Vaccine 28, 4335–4339 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Micoli, F. et al. Development of a glycoconjugate vaccine to prevent meningitis in Africa caused by meningococcal serogroup X. Proc. Natl Acad. Sci. USA 110, 19077–19082 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Croxen, M. A. & Finlay, B. B. Molecular mechanisms of Escherichia coli pathogenicity. Nature Rev. Microbiol. 8, 26–38 (2010).

    Article  CAS  Google Scholar 

  50. Bjarnsholt, T., Ciofu, O., Molin, S., Givskov, M. & Hoiby, N. Applying insights from biofilm biology to drug development—can a new approach be developed? Nature Rev. Drug Discov. 12, 791–808 (2013).

    Article  CAS  Google Scholar 

  51. Singh, B., Fleury, C., Jalalvand, F. & Riesbeck, K. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol. Rev. 36, 1122–1180 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Tettelin, H. et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Kahler, C. M. et al. The (α2→8)-linked polysialic acid capsule and lipooligosaccharide structure both contribute to the ability of serogroup B Neisseria meningitidis to resist the bactericidal activity of normal human serum. Infect. Immun. 66, 5939–5947 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank R. Barrow and X. Bai (Public Health England) for performing SBA assays, G. Lipowsky for managing immunization experiments and T. Claridge for assistance with NMR analyses. The authors acknowledge GlycoVaxyn for financial support. B.G.D. was a Royal Society Wolfson Research Merit Award recipient.

Author information

Authors and Affiliations

Authors

Contributions

L.K., B.V., A.F., M.K. and B.G.D. designed the experiments. L.K., J.P., A.N.Z. and B.V. conducted the carbohydrate syntheses. B.V. generated protein scaffolds and constructed the corresponding glycoconjugates. L.K., B.V. and L.N. performed the immunological experiments. L.K., B.V., M.K. and B.G.D. analysed the results. L.K., B.V. and B.G.D. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Benjamin G. Davis.

Ethics declarations

Competing interests

M.K., L.N. and A.F. are employed by GlycoVaxyn.

Supplementary information

Supplementary information

Supplementary information (PDF 15428 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Vijayakrishnan, B., Kowarik, M. et al. An antibacterial vaccination strategy based on a glycoconjugate containing the core lipopolysaccharide tetrasaccharide Hep2Kdo2. Nature Chem 8, 242–249 (2016). https://doi.org/10.1038/nchem.2432

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2432

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing