An antibacterial vaccination strategy based on a glycoconjugate containing the core lipopolysaccharide tetrasaccharide Hep2Kdo2


Certain non-mammalian cell wall sugars are conserved across a variety of pathogenic bacteria. This conservation of structure, combined with their structural differences when compared with mammalian sugars, make them potentially powerful epitopes for immunization. Here, we report the synthesis of a glycoconjugate that displays the so-called ‘inner core’ sugars of Gram-negative bacterial cell walls. We also describe an antibacterial vaccination strategy based on immunization with the glycoconjugate and the subsequent administration of an inhibitor that uncovers the corresponding epitope in pathogenic bacteria. The core tetrasaccharide, Hep2Kdo2, a common motif in bacterial lipopolysaccharides, was synthesized and attached via a chain linker to a diphtheria toxin mutant carrier protein. This glycoconjugate generated titres of antibodies towards the inner core tetrasaccharide of the lipopolysaccharide, which were capable of binding the cell-surface sugars of bacterial pathogenic strains including Neisseria meningitidis, Pseudomonas aeruginosa and Escherichia coli. Exposure of bacterial lipopolysaccharide in in vitro experiments, using an inhibitor of capsular polysaccharide transport, enabled potent bacterial killing with antiserum.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The target core tetrasaccharide of the lipooligosaccharide (LOS) of Gram-negative bacteria.
Figure 2: Design of glycoconjugate with the core tetrasaccharide of the LOS of Gram-negative bacteria.
Figure 3: Synthesis of glycoconjugate vaccine 1.
Figure 4: Mass spectrometric (MALDI-TOF) analysis of glycoconjugate 1.
Figure 5: Immune responses and antibacterial activity from the putative vaccine glycoconjugate 1.


  1. 1

    ECDC. Antimicrobial Resistance Surveillance in Europe. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) (European Centre for Disease Prevention and Control, 2011);

  2. 2

    Mishra, R. P., Oviedo-Orta, E., Prachi, P., Rappuoli, R. & Bagnoli, F. Vaccines and antibiotic resistance. Curr. Opin. Microbiol. 15, 596–602 (2012).

  3. 3

    Rappuoli, R., Mandl, C. W., Black, S. & De Gregorio, E. Vaccines for the twenty-first century society. Nature Rev. Immunol. 11, 865–872 (2011).

  4. 4

    Livermore, D. M. Fourteen years in resistance. Int. J. Antimicrob. Agents 39, 283–294 (2012).

  5. 5

    Yang, Y., Martin, C. E. & Seeberger, P. H. Total synthesis of the core tetrasaccharide of Neisseria meningitidis lipopolysaccharide, a potential vaccine candidate for meningococcal diseases. Chem. Sci. 3, 896–899 (2012).

  6. 6

    Cox, A. et al. Investigating the candidacy of LPS-based glycoconjugates to prevent invasive meningococcal disease: immunology of glycoconjugates with high carbohydrate loading. Glycoconjugate J. 27, 643–648 (2010).

  7. 7

    Gidney, M. A. et al. Development, characterization, and functional activity of a panel of specific monoclonal antibodies to inner core lipopolysaccharide epitopes in Neisseria meningitidis. Infect. Immun. 72, 559–569 (2004).

  8. 8

    Parker, M. J. et al. Structural basis for selective cross-reactivity in a bactericidal antibody against inner core lipooligosaccharide from Neisseria meningitidis. Glycobiology 24, 442–449 (2014).

  9. 9

    Rahman, M. M., Kahler, C. M., Stephens, D. S. & Carlson, R. W. The structure of the lipooligosaccharide (LOS) from the α-1,2-N-acetyl glucosamine transferase (rfaKNMB) mutant strain CMK1 of Neisseria meningitidis: implications for LOS inner core assembly and LOS-based vaccines. Glycobiology 11, 703–709 (2001).

  10. 10

    Gorringe, A. R. et al. Phase I safety and immunogenicity study of a candidate meningococcal disease vaccine based on Neisseria lactamica outer membrane vesicles. Clin. Vaccine Immunol. 16, 1113–1120 (2009).

  11. 11

    Jakel, A. et al. Naturally-occurring human serum antibodies to inner core lipopolysaccharide epitopes of Neisseria meningitidis protect against invasive meningococcal disease caused by isolates displaying homologous inner core structures. Vaccine 26, 6655–6663 (2008).

  12. 12

    Findlow, J. et al. Multicenter, open-label, randomized phase II controlled trial of an investigational recombinant Meningococcal serogroup B vaccine with and without outer membrane vesicles, administered in infancy. Clin. Infect. Dis. 51, 1127–1137 (2010).

  13. 13

    Seib, K. L. et al. Factor H-binding protein is important for meningococcal survival in human whole blood and serum and in the presence of the antimicrobial peptide LL-37. Infect. Immun. 77, 292–299 (2009).

  14. 14

    Findlow, J. et al. Comparison and correlation of Neisseria meningitidis serogroup B immunologic assay results and human antibody responses following three doses of the Norwegian meningococcal outer membrane vesicle vaccine MenBvac. Infect. Immun. 74, 4557–4565 (2006).

  15. 15

    Lucidarme, J. et al. Characterization of fHbp, nhba (gna2132), nadA, porA, sequence type (ST), and genomic presence of IS1301 in group B meningococcal ST269 clonal complex isolates from England and Wales. J. Clin. Microbiol. 47, 3577–3585 (2009).

  16. 16

    Klein, G., Lindner, B., Brade, H. & Raina, S. Molecular basis of lipopolysaccharide heterogeneity in Escherichia coli: envelope stress-responsive regulators control the incorporation of glycoforms with a third 3-deoxy-alpha-D-manno-oct-2-ulosonic acid and rhamnose. J. Biol. Chem. 286, 42787–42807 (2011).

  17. 17

    Kohler, T., Donner, V. & van Delden, C. Lipopolysaccharide as shield and receptor for R-pyocin-mediated killing in Pseudomonas aeruginosa. J. Bacteriol. 192, 1921–1928 (2010).

  18. 18

    Pizza, M. et al. Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287, 1816–1820 (2000).

  19. 19

    Lam, J. S., Taylor, V. L., Islam, S. T., Hao, Y. & Kocincova, D. Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front. Microbiol. 2, 118 (2011).

  20. 20

    Brabetz, W., Muller-Loennies, S., Holst, O. & Brade, H. Deletion of the heptosyltransferase genes rfaC and rfaF in Escherichia coli K-12 results in an Re-type lipopolysaccharide with a high degree of 2-aminoethanol phosphate substitution. Eur. J. Biochem. 247, 716–724 (1997).

  21. 21

    Dasgupta, T. et al. Characterization of lipopolysaccharide-deficient mutants of Pseudomonas aeruginosa derived from serotypes O3, O5, and O6. Infect. Immun. 62, 809–817 (1994).

  22. 22

    Gu, X. X. et al. Synthesis, characterization, and immunologic properties of detoxified lipooligosaccharide from nontypeable Haemophilus influenzae conjugated to proteins. Infect. Immun. 64, 4047–4053 (1996).

  23. 23

    Paulsen, H., Stiem, M. & Unger, F. M. Synthese eines 3-desoxy-D-manno-2-octulosonsäure(KDO)-haltigen tetrasaccharides und dessen strukturvergleich mit einem abbau- produkt aus bakterien-lipopolysacchariden. Tetrahedron Lett. 27, 1135–1138 (1986).

  24. 24

    Boons, G. J. P. H., van Delft, F. L., van der Klein, P. A. M., van der Marel, G. A. & van Boom, J. H. Synthesis of LD-Hepp and KDO containing di- and tetrasaccharide derivatives of Neisseria meningitidis inner-core region via iodonium ion promoted glycosidations. Tetrahedron 48, 885–904 (1992).

  25. 25

    Bernlind, C. & Oscarson, S. Synthesis of L-glycero-D-manno-heptopyranose-containing oligosaccharide structures found in lipopolysaccharides from Haemophilus influenzae. Carbohydr. Res. 297, 251–260 (1997).

  26. 26

    Yang, Y., Martin, C. E. & Seeberger, P. H. Total synthesis of the core tetrasaccharide of Neisseria meningitidis lipopolysaccharide, a potential vaccine candidate for meningococcal diseases. Chem. Sci. 3, 896–899 (2012).

  27. 27

    Kong, L. et al. Single-molecule interrogation of a bacterial sugar transporter allows the discovery of an extracellular inhibitor. Nature Chem. 5, 651–659 (2013).

  28. 28

    Seeberger, P. H. Automated oligosaccharide synthesis. Chem. Soc. Rev. 37, 19–28 (2008).

  29. 29

    Hsu, C.-H., Hung, S.-C., Wu, C.-Y. & Wong, C.-H. Toward automated oligosaccharide synthesis. Angew. Chem. Int. Ed. 50, 11872–11923 (2011).

  30. 30

    Lowary, T. L. Context and complexity: the next big thing in synthetic glycobiology. Curr. Opin. Chem. Biol. 17, 990–996 (2013).

  31. 31

    Wang, L. X. & Davis, B. G. Realizing the promise of chemical glycobiology. Chem. Sci. 4, 3381–3394 (2013).

  32. 32

    Boltje, T. J. et al. Chemical synthesis and immunological evaluation of the inner core oligosaccharide of Francisella tularensis. J. Am. Chem. Soc. 134, 14255–14262 (2012).

  33. 33

    Yang, Y., Oishi, S., Martin, C. E. & Seeberger, P. H. Diversity-oriented synthesis of inner core oligosaccharides of the lipopolysaccharide of pathogenic Gram-negative bacteria. J. Am. Chem. Soc. 135, 6262–6271 (2013).

  34. 34

    Anish, C., Guo, X., Wahlbrink, A. & Seeberger, P. H. Plague detection by anti-carbohydrate antibodies. Angew. Chem. Int. Ed. 52, 9524–9528 (2013).

  35. 35

    Kosma, P., Hofinger, A., Muller-Loennies, S. & Brade, H. Synthesis of a neoglycoconjugate containing a Chlamydophila psittaci-specific branched Kdo trisaccharide epitope. Carbohydr. Res. 345, 704–708 (2010).

  36. 36

    Boltje, T. J., Kim, J. H., Park, J. & Boons, G. J. Chiral-auxiliary-mediated 1,2-cis-glycosylations for the solid-supported synthesis of a biologically important branched α-glucan. Nature Chem. 2, 552–557 (2010).

  37. 37

    Matsuo, I., Isomura, M., Miyazaki, T., Sakakibara, T. & Ajisaka, K. Chemoenzymatic synthesis of the branched oligosaccharides which correspond to the core structures of N-linked sugar chains. Carbohydr. Res. 305, 401–413 (1997).

  38. 38

    Schmidt, R. R. New methods for the synthesis of glycosides and oligosaccharides—are there alternatives to the Koenigs–Knorr method?. Angew. Chem. Int. Ed. Engl 25, 212–235 (1986).

  39. 39

    Van der Klein, P. A. M., Boons, G. J. P. H., Veeneman, G. H., van der Marel, G. A. & van Boom, J. H. An efficient route to 3-deoxy-D-manno-2-octulosonic acid (KDO) derivatives via a 1,4-cyclic sulfate approach. Tetrahedron Lett. 30, 5477–5480 (1989).

  40. 40

    Segerstedt, E., Mannerstedt, K., Johansson, M. & Oscarson, S. Synthesis of the branched trisaccharide L-glycero-α-D-manno-heptopyranosyl-(1→3)-[β-D-glucopyranosyl-(1→4)]-L-glycero-α-D-manno-heptopyranose, protected to allow flexible access to Neisseria and Haemophilus LPS inner core structures. J. Carbohydr. Chem. 23, 443–452 (2004).

  41. 41

    Dasser, M., Chretien, F. & Chapleur, Y. A facile and stereospecific synthesis of L-glycero-D-manno-heptose and some derivatives. J. Chem. Soc. Perkin Trans. 1, 3091–3094 (1990).

  42. 42

    Paulsen, H., Schüller, M., Heitmann, A., Nashed, M. A. & Redlich, H. Verzweigte und kettenverlängerte Zucker, XXX: Diastereoselektive Synthese von L-glycero-D-manno-heptose, einem Baustein der inneren Core-Region von Lipopolysacchariden. Liebigs Annalen der Chemie 1986, 675–686 (1986).

  43. 43

    Paulsen, H. H. & Axel, C. Synthese von Strukturen der inneren Core-Region von Lipopolysacchariden. Liebigs Annalen de Chemie 1988, 1061–1071 (1988).

  44. 44

    Lukasiewicz, J., Niedziela, T., Jachymek, W., Kenne, L. & Lugowski, C. Two Kdo-heptose regions identified in Hafnia alvei 32 lipopolysaccharide: the complete core structure and serological screening of different Hafnia O serotypes. J. Bacteriol. 191, 533–544 (2009).

  45. 45

    Patel, M. K. et al. Analysis of the dispersity in carbohydrate loading of synthetic glycoproteins using MALDI-TOF mass spectrometry. Chem. Commun. 46, 9119–9121 (2010).

  46. 46

    Kimura, Y., Saito, M., Kimata, Y. & Kohno, K. Transgenic mice expressing a fully nontoxic diphtheria toxin mutant, not CRM197 mutant, acquire immune tolerance against diphtheria toxin. J. Biochem. (Tokyo) 142, 105–112 (2007).

  47. 47

    Shinefield, H. R. Overview of the development and current use of CRM197 conjugate vaccines for pediatric use. Vaccine 28, 4335–4339 (2010).

  48. 48

    Micoli, F. et al. Development of a glycoconjugate vaccine to prevent meningitis in Africa caused by meningococcal serogroup X. Proc. Natl Acad. Sci. USA 110, 19077–19082 (2013).

  49. 49

    Croxen, M. A. & Finlay, B. B. Molecular mechanisms of Escherichia coli pathogenicity. Nature Rev. Microbiol. 8, 26–38 (2010).

  50. 50

    Bjarnsholt, T., Ciofu, O., Molin, S., Givskov, M. & Hoiby, N. Applying insights from biofilm biology to drug development—can a new approach be developed? Nature Rev. Drug Discov. 12, 791–808 (2013).

  51. 51

    Singh, B., Fleury, C., Jalalvand, F. & Riesbeck, K. Human pathogens utilize host extracellular matrix proteins laminin and collagen for adhesion and invasion of the host. FEMS Microbiol. Rev. 36, 1122–1180 (2012).

  52. 52

    Tettelin, H. et al. Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 287, 1809–1815 (2000).

  53. 53

    Kahler, C. M. et al. The (α2→8)-linked polysialic acid capsule and lipooligosaccharide structure both contribute to the ability of serogroup B Neisseria meningitidis to resist the bactericidal activity of normal human serum. Infect. Immun. 66, 5939–5947 (1998).

Download references


The authors thank R. Barrow and X. Bai (Public Health England) for performing SBA assays, G. Lipowsky for managing immunization experiments and T. Claridge for assistance with NMR analyses. The authors acknowledge GlycoVaxyn for financial support. B.G.D. was a Royal Society Wolfson Research Merit Award recipient.

Author information




L.K., B.V., A.F., M.K. and B.G.D. designed the experiments. L.K., J.P., A.N.Z. and B.V. conducted the carbohydrate syntheses. B.V. generated protein scaffolds and constructed the corresponding glycoconjugates. L.K., B.V. and L.N. performed the immunological experiments. L.K., B.V., M.K. and B.G.D. analysed the results. L.K., B.V. and B.G.D. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Benjamin G. Davis.

Ethics declarations

Competing interests

M.K., L.N. and A.F. are employed by GlycoVaxyn.

Supplementary information

Supplementary information

Supplementary information (PDF 15428 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kong, L., Vijayakrishnan, B., Kowarik, M. et al. An antibacterial vaccination strategy based on a glycoconjugate containing the core lipopolysaccharide tetrasaccharide Hep2Kdo2. Nature Chem 8, 242–249 (2016).

Download citation

Further reading