Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of metal ions in X-ray-induced photochemistry

Abstract

Metal centres in biomolecules are recognized as being particularly sensitive to radiation damage by X-ray photons. This results in such molecules being both susceptible to an effective X-ray-induced loss of function and problematic to study using X-ray diffraction methods, with reliable structures of the metal centres difficult to obtain. Despite the abundance of experimental evidence, the mechanistic details of radiation damage at metal centres are unclear. Here, using ab initio calculations, we show that the absorption of X-rays by microsolvated Mg2+ results in a complicated chain of ultrafast electronic relaxation steps that comprise both intra- and intermolecular processes and last for a few hundred femtoseconds. At the end of this cascade the metal reverts to its original charge state, the immediate environment becomes multiply ionized and large concentrations of radicals and slow electrons build up in the metal's vicinity. We conclude that such cascades involving metal ions are essential to our understanding of radiation chemistry and radiation damage in biological environments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Modes of electronic relaxation of the microsolvated Mg4+ cation created by the core ionization of Mg2+ (photoelectron not shown) and subsequent Auger decay.
Figure 2: Schematic description of the electronic decay processes that take place after the core ionization of the hydrated Mg2+ cation.

References

  1. Bertini, I., Gray, H. B., Stiefel, E. I. & Valentine, J. S. Biological Inorganic Chemistry (University Science Books, 2007).

    Google Scholar 

  2. Andreini, C., Bertini, I., Cavallaro, G., Holliday, G. & Thornton, J. Metal ions in biological catalysis: from enzyme databases to general principles. J. Biol. Inorg. Chem. 13, 1205–1218 (2008).

    Article  CAS  Google Scholar 

  3. Strick, R., Strissel, P. L., Gavrilov, K. & Levi-Setti, R. Cation–chromatin binding as shown by ion microscopy is essential for the structural integrity of chromosomes. J. Cell Biol. 155, 899–910 (2001).

    Article  CAS  Google Scholar 

  4. Wu, B. & Davey, C. A. Using soft X-rays for a detailed picture of divalent metal binding in the nucleosome. J. Mol. Biol. 398, 633–640 (2010).

    Article  CAS  Google Scholar 

  5. Jawad, H. H. & Watt, D. E. Physical mechanism for inactivation of metallo-enzymes by characteristic X-rays. Int. J. Radiat. Biol. 50, 665–674 (1986).

    CAS  Google Scholar 

  6. Carugo, O. & Carugo, K. D. When X-rays modify the protein structure: radiation damage at work. Trends Biochem. Sci. 30, 213–219 (2005).

    Article  CAS  Google Scholar 

  7. Yano, J. et al. X-ray damage to the Mn4Ca complex in single crystals of photosystem II. A case study for metalloprotein crystallography. Proc. Natl Acad. Sci. USA 102, 12047–12052 (2005).

    Article  CAS  Google Scholar 

  8. George, S. J. et al. X-ray photochemistry in iron complexes from Fe(0) to Fe(IV)—can a bug become a feature? Inorg. Chim. Acta 361, 1157–1165 (2008).

    Article  CAS  Google Scholar 

  9. Mesu, J. G., Beale, A. M., de Groot, F. M. F. & Weckhuysen, B. M. Probing the influence of X-rays on aqueous copper solutions using time-resolved in situ combined video/X-ray absorption near-edge/ultraviolet/visible spectroscopy. J. Phys. Chem. B 110, 17671–17677 (2006).

    Article  CAS  Google Scholar 

  10. George, G. N. et al. X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples. J. Synchrotron Radiat. 19, 875–886 (2012).

    Article  CAS  Google Scholar 

  11. Howell, R. W. Auger processes in the 21st century. Int. J. Radiat. Biol. 84, 959–975 (2008).

    Article  CAS  Google Scholar 

  12. Gokhberg, K., Kolorenč, P., Kuleff, A. I. & Cederbaum, L. S. Site- and energy-selective slow-electron production through intermolecular Coulombic decay. Nature 505, 661–663 (2014).

    Article  CAS  Google Scholar 

  13. Thürmer, S. et al. On the nature and origin of dicationic, charge-separated species formed in liquid water on X-ray irradiation. Nature Chem. 5, 590–596 (2013).

    Article  Google Scholar 

  14. Cederbaum, L. S., Zobeley, J. & Tarantelli, F. Giant intermolecular decay and fragmentation of clusters. Phys. Rev. Lett. 79, 4778–4781 (1997).

    Article  CAS  Google Scholar 

  15. Zobeley, J., Santra, R. & Cederbaum, L. S. Electronic decay in weakly bound heteroclusters: energy transfer versus electron transfer. J. Chem. Phys. 115, 5076–5088 (2001).

    Article  CAS  Google Scholar 

  16. Jahnke, T. Interatomic and intermolecular Coulombic decay: the coming of age story. J. Phys. B 48, 082001 (2015).

    Article  Google Scholar 

  17. Marsalek, O. et al. Chasing charge localization and chemical reactivity following photoionization in liquid water. J. Chem. Phys. 135, 224510 (2011).

    Article  Google Scholar 

  18. Svoboda, O., Hollas, D., Oncak, M. & Slavíček, P. Reaction selectivity in an ionized water dimer: nonadiabatic ab initio dynamics simulations. Phys. Chem. Chem. Phys. 15, 11531–11542 (2013).

    Article  CAS  Google Scholar 

  19. Jahnke, T. et al. Ultrafast energy transfer between water molecules. Nature Phys. 6, 139–142 (2010).

    Article  CAS  Google Scholar 

  20. Barran, P. E., Walker, N. R. & Stace, A. J. Competitive charge transfer reactions in small [Mg(H2O)n]2+ clusters. J. Chem. Phys. 12, 6173–6177 (2000).

    Article  Google Scholar 

  21. Pedersen, H. B. et al. Photolysis of water-radical ions H2O+ in the XUV: fragmentation through dicationic states. Phys. Rev. A 87, 013402 (2013).

    Article  Google Scholar 

  22. Averbukh, V., Müller, I. B. & Cederbaum, L. S. Mechanism of interatomic Coulombic decay in clusters. Phys. Rev. Lett. 93, 263002 (2004).

    Article  Google Scholar 

  23. Kolorenč, P., Averbukh, V., Gokhberg, K. & Cederbaum, L. S. Ab initio calculation of interatomic decay rates of excited doubly ionized states in clusters. J. Chem. Phys. 129, 244102 (2008).

    Article  Google Scholar 

  24. Förstel, M., Mucke, M., Arion, T., Bradshaw, A. M. & Hergenhahn, U. Autoionization mediated by electron transfer. Phys. Rev. Lett. 106, 033402 (2011).

    Article  Google Scholar 

  25. Sakai, K. et al. Electron-transfer-mediated decay and interatomic Coulombic decay from the triply ionized states in argon dimers. Phys. Rev. Lett. 106, 033401 (2011).

    Article  CAS  Google Scholar 

  26. Stumpf, V., Kolorenč, P., Gokhberg, K. & Cederbaum, L. S. Efficient pathway to neutralization of multiply charged ions produced in Auger processes. Phys. Rev. Lett. 110, 258302 (2013).

    Article  CAS  Google Scholar 

  27. Stumpf, V., Kryzhevoi, N. V., Gokhberg, K. & Cederbaum, L. S. Enhanced one-photon double ionization of atoms and molecules in an environment of different species. Phys. Rev. Lett. 112, 193001 (2014).

    Article  CAS  Google Scholar 

  28. Pokapanich, W. et al. Ionic-charge dependence of the intermolecular Coulombic decay time scale for aqueous ions probed by the core-hole clock. J. Am. Chem. Soc. 133, 13430–13436 (2011).

    Article  CAS  Google Scholar 

  29. Ohtaki, H. & Radnai, T. Structure and dynamics of hydrated ions. Chem. Rev. 93, 1157–1204 (1993).

    Article  CAS  Google Scholar 

  30. Müller, I. B. & Cederbaum, L. S. Electronic decay following ionization of aqueous Li+ microsolvation clusters. J. Chem. Phys. 122, 094305 (2005).

    Article  Google Scholar 

  31. Öhrwall, G. et al. Charge dependence of solvent-mediated intermolecular Coster–Kronig decay dynamics of aqueous ions. J. Phys. Chem. B 114, 17057 (2010).

    Article  Google Scholar 

  32. Vendrell, O., Stoychev, S. & Cederbaum, L. S. Generation of highly damaging H2O+ radicals by inner valence shell ionization of water. ChemPhysChem 11, 1006–1009 (2010).

    Article  CAS  Google Scholar 

  33. Pokapanich, W. et al. Auger electron spectroscopy as a probe of the solution of aqueous ions. J. Am. Chem. Soc. 131, 7264–7271 (2009).

    Article  CAS  Google Scholar 

  34. Slavíček, P., Winter, B., Cederbaum, L. S. & Kryzhevoi, N. V. Proton-transfer mediated enhancement of nonlocal electronic relaxation processes in X-ray irradiated liquid water. J. Am. Chem. Soc. 136, 18170–18176 (2014).

    Article  Google Scholar 

  35. Ottosson, N., Öhrwall, G. & Björneholm, O. Ultrafast charge delocalization dynamics in aqueous electrolytes: new insights from Auger electron spectroscopy. Chem. Phys. Lett. 543, 1–11 (2012).

    Article  CAS  Google Scholar 

  36. Kryzhevoi, N. V. & Cederbaum, L. S. Using pH-value to control intermolecular electronic decay. Angew. Chem. Int. Ed. 50, 1306–1309 (2011).

    Article  CAS  Google Scholar 

  37. Fasshauer, E., Förstel, M., Pallmann, S., Pernpointner, M. & Hergenhahn, U. Using ICD for structural analysis of clusters: a case study on NeAr clusters. New J. Phys. 16, 103026 (2014).

    Article  Google Scholar 

  38. Tavernelli, I. et al. Time-dependent density functional theory molecular dynamics simulations of liquid water radiolysis. ChemPhysChem 9, 2099–2103 (2008).

    Article  CAS  Google Scholar 

  39. O'Neill, P. in Radiation Chemistry: Present Status and Future Trends (eds Jonah, C. D. & Rao, B. S. M. ) (Elsevier Science B.V., 2001).

    Google Scholar 

  40. Gaigeot, M.-P. et al. A multi-scale ab initio theoretical study of the production of free radicals in swift ion tracks in liquid water. J. Phys. B 40, 1–12 (2007).

    Article  CAS  Google Scholar 

  41. Alizadeh, E., Orlando, T. M. & Sanche, L. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu. Rev. Phys. Chem. 66, 379–398 (2015).

    Article  CAS  Google Scholar 

  42. Takakura, K. Double-strand breaks in DNA induced by the K-shell ionization of calcium atoms. Acta Oncol. 35, 883–888 (1996).

    Article  CAS  Google Scholar 

  43. Werner, H.-J. et al. Molpro, a general-purpose quantum chemistry program package. WIREs Comput. Mol. Sci. 2, 242–253 (2012).

    Google Scholar 

  44. Glendening, E. D. & Feller, D. Dication–water interactions: M2+(H2O)n clusters for alkaline earth metals M = Mg, Ca, Sr, Ba, and Ra. J. Phys. Chem. 100, 4790–4797 (1996).

    Article  CAS  Google Scholar 

  45. Trofimov, A. B. & Schirmer, J. Molecular ionization energies and ground- and ionic-state properties using a non-Dyson electron propagator approach. J. Chem. Phys. 123, 144115 (2005).

    Article  CAS  Google Scholar 

  46. Tarantelli, F. The calculation of molecular double ionization spectra by Green's functions. Chem. Phys. 329, 11–21 (2006).

    Article  CAS  Google Scholar 

  47. Karlström, G. et al. Molcas: a program package for computational chemistry. Comp. Mat. Sci. 28, 222–239 (2003).

    Article  Google Scholar 

  48. Guest, M. F. et al. The GAMESS-UK electronic structure package: algorithms, developments and applications. Mol. Phys. 103, 719–747 (2005).

    Google Scholar 

  49. Averbukh, V. & Cederbaum, L. S. Ab initio calculation of interatomic decay rates by a combination of the Fano ansatz, Green's function methods, and the Stieltjes imaging technique. J. Chem. Phys. 123, 204107 (2005).

    Article  Google Scholar 

  50. Kryzhevoi, N. V., Averbukh, V. & Cederbaum, L. S. High activity of helium droplets following ionisation of systems inside those droplets. Phys. Rev. B 76, 094513 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank N. V. Kryzhevoi, S. Klaiman, E. V. Gromov and P. Kolorenč for discussions and technical advice. Financial support of the Deutsche Forschungsgemeinschaft (FOR 1789 ‘Interatomic Coulombic Decay’) is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

V.S., K.G. and L.S.C. conceived the idea of electronic cascades in metal–ion complexes. V.S. and K.G. carried out the computations. V.S., K.G. and L.S.C. analysed the results and wrote the paper.

Corresponding author

Correspondence to K. Gokhberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 268 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stumpf, V., Gokhberg, K. & Cederbaum, L. The role of metal ions in X-ray-induced photochemistry. Nature Chem 8, 237–241 (2016). https://doi.org/10.1038/nchem.2429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2429

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing