Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Self-assembled nanospheres with multiple endohedral binding sites pre-organize catalysts and substrates for highly efficient reactions

Abstract

Tuning reagent and catalyst concentrations is crucial in the development of efficient catalytic transformations. In enzyme-catalysed reactions the substrate is bound—often by multiple non-covalent interactions—in a well-defined pocket close to the active site of the enzyme; this pre-organization facilitates highly efficient transformations. Here we report an artificial system that co-encapsulates multiple catalysts and substrates within the confined space defined by an M12L24 nanosphere that contains 24 endohedral guanidinium-binding sites. Cooperative binding means that sulfonate guests are bound much more strongly than carboxylates. This difference has been used to fix gold-based catalysts firmly, with the remaining binding sites left to pre-organize substrates. This strategy was applied to a Au(I)-catalysed cyclization of acetylenic acid to enol lactone in which the pre-organization resulted in much higher reaction rates. We also found that the encapsulated sulfonate-containing Au(I) catalysts did not convert neutral (acid) substrates, and so could have potential in the development of substrate-selective catalysis and base-triggered on/off switching of catalysis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Synthesis and characterization of the M12L24 spheres that bear endohedral guanidinium-binding sites.
Figure 2: The reaction progress for the conversion of 4 is displayed for different catalysts.
Figure 3: Schematic representation of the base-triggered catalytic gating process.

References

  1. 1

    van Leeuwen, P. W. N. M. Supramolecular Catalysis (Wiley-VCH, 2008).

    Book  Google Scholar 

  2. 2

    Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts. Chem. Soc. Rev. 43, 1660–1733 (2014).

    CAS  PubMed  Article  Google Scholar 

  3. 3

    Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem. Soc. Rev. 43, 1734–1787 (2014).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Meeuwissen, J. & Reek, J. N. H. Supramolecular catalysis beyond enzyme mimics. Nature Chem. 2, 615–621 (2010).

    CAS  Article  Google Scholar 

  5. 5

    Breit, B. Supramolecular approaches to generate libraries of chelating bidentate ligands for homogeneous catalysis. Angew. Chem. Int. Ed. 44, 6816–6825 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Dydio, P. & Reek, J. N. H. Supramolecular control of selectivity in transition-metal catalysis through substrate preorganization. Chem. Sci. 5, 2135–2145 (2014).

    CAS  Article  Google Scholar 

  7. 7

    Breslow, R. & Dong, S. D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev. 98, 1997–2011 (1998).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Hooley, R. J. & Rebek, J. Jr . Chemistry and catalysis in functional cavitands. Chem. Biol. 255–264 (2009).

  9. 9

    Dong, Z., Luo, Q. & Liu, J. Artificial enzymes based on supramolecular scaffolds. Chem. Soc. Rev. 41, 7890–7908 (2012).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Vriezema, D. M. et al. Self-assembled nanoreactors. Chem. Rev. 105, 1445–1489 (2005).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Fiedler, D., Leung, D. H., Bergman, R. G. & Raymond, K. N. Selective molecular recognition, C−H bond activation, and catalysis in nanoscale reaction vessels. Acc. Chem. Res. 38, 351–360 (2005).

    Article  CAS  Google Scholar 

  12. 12

    Koblenz, T. S., Wassenaar, J. & Reek, J. N. H. Reactivity within a confined self-assembled nanospace. Chem. Soc. Rev. 37, 247–262 (2008).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Pluth, M. D., Bergman, R. G. & Raymond, K. N. Proton-mediated chemistry and catalysis in a self-assembled supramolecular host. Acc. Chem. Res. 42, 1650–1659 (2009).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418–3438 (2009).

    CAS  Article  Google Scholar 

  15. 15

    Wiester, M. J., Ulmann, P. A. & Mirkin, C. A. Enzyme mimics based upon supramolecular coordination chemistry. Angew. Chem. Int. Ed. 50, 114–137 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Amouri, H., Desmarets, C. & Moussa, J. Confined nanospaces in metallocages: guest molecules, weakly encapsulated anions, and catalyst sequestration. Chem. Rev. 112, 2015–2041 (2012).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Leenders, S. H. A. M., Gramage-Doria, R., de Bruin, B. & Reek, J. N. H. Transition metal catalysis in confined spaces. Chem. Soc. Rev. 44, 433–448 (2015).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Tominaga, M., Suzuki, K., Murase, T. & Fujita, M. 24-Fold endohedral functionalization of a self-assembled M12L24 coordination nanoball. J. Am. Chem. Soc. 127, 11950–11951 (2005).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Harris, K., Fujita, D. & Fujita, M. Giant hollow MnL2n spherical complexes: structure, functionalisation and applications. Chem. Commun. 49, 6703–6712 (2013).

    CAS  Article  Google Scholar 

  20. 20

    Harris, K., Sun, Q.-F., Sato, S. & Fujita, M. M12L24 spheres with endo and exo coordination sites: scaffolds for non-covalent functionalization. J. Am. Chem. Soc. 135, 12497–12499 (2013).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Bruns, C. J. et al. Emergent ion-gated binding of cationic host–guest complexes within cationic M12L24 molecular flasks. J. Am. Chem. Soc. 136, 12027–12034 (2014).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Gramage-Doria, R. et al. Gold(I) catalysis at extreme concentrations inside self-assembled nanospheres. Angew. Chem. Int. Ed. 53, 13380–13384 (2014).

    CAS  Article  Google Scholar 

  23. 23

    Best, M. D., Tobey, S. L. & Anslyn, E. V. Abiotic guanidinium containing receptors for anionic species. Coord. Chem. Rev. 240, 3–15 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Schug, K. A. & Lindner, W. Noncovalent binding between guanidinium and anionic groups: focus on biological- and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues. Chem. Rev. 105, 67–113 (2005).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Burrows, A. D., Harrington, R. W., Mahon, M. F. & Teat, S. J. Structural manipulation of hydrogen bond networks using sulfonated phosphane ligands and their complexes: competition and interplay between strong and weak hydrogen bonds. Eur. J. Inorg. Chem. 1433–1439 (2003).

  26. 26

    Russell, V. A., Etter, M. C. & Ward, M. D. Layered materials by molecular design: structural enforcement by hydrogen bonding in guanidinium alkane- and arenesulfonates. J. Am. Chem. Soc. 116, 1941–1952 (1994).

    CAS  Article  Google Scholar 

  27. 27

    Xiao, W., Hu, C. & Ward, M. D. Guest exchange through single crystal–single crystal transformations in a flexible hydrogen-bonded framework. J. Am. Chem. Soc. 136, 14200–14206 (2014).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Fujita, D., Takahashi, A., Sato, S. & Fujita, M. Self-assembly of Pt(II) spherical complexes via temporary labilization of the metal–ligand association in 2,2,2-trifluoroethanol. J. Am. Chem. Soc. 133, 13317–13319 (2011).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Li, D. et al. Viral-capsid-type vesicle-like structures assembled from M12L24 metal–organic hybrid nanocages. Angew. Chem. Int. Ed. 50, 5182–5187 (2011).

    CAS  Article  Google Scholar 

  30. 30

    Kikuchi, T., Murase, T., Sato, S. & Fujita, M. Polymerisation of an anionic monomer in a self-assembled M12L24 coordination sphere with cationic interior. Supramol. Chem. 20, 81–94 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Desmarets, C., Ducarre, T., Rager, M. N., Gontard, G. & Amouri, H. Self-assembled M2L4 nanocapsules: synthesis, structure and host–guest recognition toward square planar metal complexes. Materials 7, 287–301 (2014)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32

    Desmarets, C., Gontard, G., Cooksy, A. L., Rager, M. N. & Amouri, H. Encapsulation of a metal complex within a self-assembled nanocage: synergy effects, molecular structures, and density functional theory calculations. Inorg. Chem. 53, 4287–4294 (2014).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Genin, E. et al. Room temperature Au(I)-catalyzed exo-selective cycloisomerization of acetylenic acids: an entry to functionalized γ-lactones. J. Am. Chem. Soc. 128, 3112–3113 (2006).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Harkat, H., Weibel, J.-M. & Pale, P. A mild access to γ- or δ-alkylidene lactones through gold catalysis. Tetrahedron Lett. 47, 6273–6276 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Lee, L.-C. & Zhao, Y. Metalloenzyme-mimicking supramolecular catalyst for highly active and selective intramolecular alkyne carboxylation. J. Am. Chem. Soc. 136, 5579–5582 (2014).

    CAS  PubMed  Article  Google Scholar 

  36. 36

    Cavarzan, A., Scarso, A., Sgarbossa, P., Strukul, G. & Reek, J. N. H. Supramolecular control on chemo- and regioselectivity via encapsulation of (NHC)-Au catalyst within a hexameric self-assembled host. J. Am. Chem. Soc. 133, 2848–2851 (2011).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Wang, Z. J., Brown, C. J., Bergman, R. G., Raymond, K. N. & Toste, F. D. Hydroalkoxylation catalyzed by a gold(I) complex encapsulated in a supramolecular host. J. Am. Chem. Soc. 133, 7358–7360 (2011).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Hart-Cooper, W. M., Clary, K. N., Toste, F. D., Bergman, R. G. & Raymond, K. N. Selective monoterpene-like cyclization reactions achieved by water exclusion from reactive intermediates in a supramolecular catalyst. J. Am. Chem. Soc. 134, 17873–17876 (2012).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Wang, Z. J., Clary, K. N., Bergman, R. G., Raymond, K. N. & Toste, F. D. A supramolecular approach to combining enzymatic and transition metal catalysis. Nature Chem. 5, 100–103 (2013).

    CAS  Article  Google Scholar 

  40. 40

    Brown, T. J., Weber, D., Gagné, M. R. & Widenhoefer, R. A. Mechanistic analysis of gold(I)-catalyzed intramolecular allene hydroalkoxylation reveals an off-cycle bis(gold) vinyl species and reversible C−O bond formation. J. Am. Chem. Soc. 134, 9134–9137 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Shu, X.-Z. et al. Silica-supported cationic gold(I) complexes as heterogeneous catalysts for regio- and enantioselective lactonization reactions. J. Am. Chem. Soc. 137, 7083–7086 (2015).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Wang, W., Hammond, G. B. & Xu, B. Ligand effects and ligand design in homogeneous gold(I) catalysis. J. Am. Chem. Soc. 134, 5697–5705 (2012).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Lindbäck, E., Dawaigher, S. & Wärnmark, K. Substrate-selective catalysis. Chem. Eur. J. 20, 13432–13481 (2014).

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the University of Amsterdam and by the European Research Council (Advanced Grant C.2322.0269). P. Li and W. I. Dzik are acknowledged for X-ray crystallography studies. B. de Bruin, J. I. van der Vlugt, W. I. Dzik and R. Gramage-Doria are also acknowledged for helpful discussions.

Author information

Affiliations

Authors

Contributions

J.N.H.R. and Q.Q.W. conceived and designed the experiments. Q.Q.W. and S.G. performed the experiments and analysed the data. M.D. and I.I.-B. carried out the CSI-MS measurements and analysed the data. J.N.H.R. and Q.Q.W. wrote the manuscript. J.N.H.R., Q.Q.W., S.G. and S.H.A.M.L. discussed the results and edited the manuscript.

Corresponding author

Correspondence to Joost N. H. Reek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3276 kb)

Supplementary information

Crystallographic data for compound 1. (CIF 694 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, QQ., Gonell, S., Leenders, S. et al. Self-assembled nanospheres with multiple endohedral binding sites pre-organize catalysts and substrates for highly efficient reactions. Nature Chem 8, 225–230 (2016). https://doi.org/10.1038/nchem.2425

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing