Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recent advances in the construction of antibody–drug conjugates

A Corrigendum to this article was published on 19 February 2016

This article has been updated


Antibody–drug conjugates (ADCs) comprise antibodies covalently attached to highly potent drugs using a variety of conjugation technologies. As therapeutics, they combine the exquisite specificity of antibodies, enabling discrimination between healthy and diseased tissue, with the cell-killing ability of cytotoxic drugs. This powerful and exciting class of targeted therapy has shown considerable promise in the treatment of various cancers with two US Food and Drug Administration approved ADCs currently on the market (Adcetris and Kadcyla) and approximately 40 currently undergoing clinical evaluation. However, most of these ADCs exist as heterogeneous mixtures, which can result in a narrow therapeutic window and have major pharmacokinetic implications. In order for ADCs to deliver their full potential, sophisticated site-specific conjugation technologies to connect the drug to the antibody are vital. This Perspective discusses the strategies currently used for the site-specific construction of ADCs and appraises their merits and disadvantages.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: General structure of an immunoglobulin G1 (IgG1) highlighting key components.
Figure 2: General scheme highlighting typical methods for the construction of ADCs based on engineered antibodies.
Figure 3: General scheme highlighting typical methods for the construction of ADCs based on native antibodies.

Change history

  • 25 January 2016

    In the originally published version of this Perspective article, reference 42 contained an incorrect article number. The reference should have read 'Maruani, A. et al. A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nature Commun. 6, 6645 (2015).' This has been corrected in all online versions.


  1. 1

    Ehrlich, P. Address in pathology, ON CHEMIOTHERAPY: Delivered before the seventeenth international congress of medicine. Brit. Med. J. 2, 353–359 (1913).

    CAS  Article  Google Scholar 

  2. 2

    Mathé, G., Loc, T. B. & Bernard, J. Effet sur la leucémie 1210 de la souris d'une combinaison par diazotation d'A-méthoptérine et de γ-globulines de hamsters porteurs de cette leucémie par hétérogreffe. C.R. Hebd. Séances Acad. Sci. 246, 1626–1628 (1958).

    PubMed  Google Scholar 

  3. 3

    Ghose, T. & Nigam, S. P. Antibody as carrier of chlorambucil. Cancer 29, 1398–1400 (1972).

    CAS  Article  Google Scholar 

  4. 4

    Rowland, G. F., O'Neill, G. J. & Davies, D. A. L. Suppression of tumour growth in mice by a drug–antibody conjugate using a novel approach to linkage. Nature 255, 487–488 (1975).

    CAS  Article  Google Scholar 

  5. 5

    Ford, C. H. J. et al. Localisation and toxicity study of a vindesine-anti-CEA conjugate in patients with advanced cancer. Brit. J. Cancer 47, 35–42 (1983).

    CAS  Article  Google Scholar 

  6. 6

    Trail, P. A. et al. Cure of xenografted human carcinomas by Br96–doxorubicin immunoconjugates. Science 261, 212–215 (1993).

    CAS  Article  Google Scholar 

  7. 7

    Pietersz, G. A. & Krauer, K. Antibody-targeted drugs for the therapy of cancer. J. Drug Target. 2, 183–215 (1994).

    CAS  Article  Google Scholar 

  8. 8

    Linenberger, M. L. et al. Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin. Blood 98, 988–994 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Younes, A. et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N. Engl. J. Med. 363, 1812–1821 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Senter, P. D. & Sievers, E. L. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nature Biotechnol. 30, 631–637 (2012).

    CAS  Article  Google Scholar 

  11. 11

    Verma, S. et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 367, 1783–1791 (2012).

    CAS  Article  Google Scholar 

  12. 12

    LoRusso, P. M., Weiss, D., Guardino, E., Girish, S. & Sliwkowski, M. X. Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin. Cancer Res. 17, 6437–6447 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Mullard, A. Maturing antibody–drug conjugate pipeline hits 30. Nature Rev. Drug Discov. 12, 329–332 (2013).

    CAS  Article  Google Scholar 

  14. 14

    Hamblett, K. J. et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 10, 7063–7070 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Stan, A. C., Radu, D. L., Casares, S., Bona, C. A. & Brumeanu, T. D. Antineoplastic efficacy of doxorubicin enzymatically assembled on galactose residues of a monoclonal antibody specific for the carcinoembryonic antigen. Cancer Res. 59, 115–121 (1999).

    CAS  PubMed  Google Scholar 

  16. 16

    Strop, P. et al. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem. Biol. 20, 161–167 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Lyons, A. et al. Site-specific attachment to recombinant antibodies via introduced surface cysteine residues. Protein Eng. 3, 703–708 (1990).

    CAS  Article  Google Scholar 

  18. 18

    Junutula, J. R. et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nature Biotechnol. 26, 925–932 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Sunbul, M. & Yin, J. Site specific protein labeling by enzymatic posttranslational modification. Org. Biomol. Chem. 7, 3361–3371 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Young, T. S., Ahmad, I., Yin, J. A. & Schultz, P. G. An enhanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol. 395, 361–374 (2010).

    CAS  Article  Google Scholar 

  21. 21

    Rabuka, D., Rush, J. S., deHart, G. W., Wu, P. & Bertozzi, C. R. Site-specific chemical protein conjugation using genetically encoded aldehyde tags. Nature Protoc. 7, 1052–1067 (2012).

  22. 22

    Axup, J. Y. et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc. Natl Acad. Sci. USA 109, 16101–16106 (2012).

    CAS  Article  Google Scholar 

  23. 23

    Junutula, J. R. et al. Rapid identification of reactive cysteine residues for site-specific labeling of antibody-Fabs. J. Immunol. Methods 332, 41–52 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Woo, H. J., Lotz, M. M., Jung, J. U. & Mercurio, A. M. Carbohydrate-binding protein 35 (Mac-2), a laminin-binding lectin, forms functional dimers using cysteine 186. J. Biol. Chem. 266, 18419–18422 (1991).

    CAS  PubMed  Google Scholar 

  25. 25

    Wootton, S. K. & Yoo, D. Homo-oligomerization of the porcine reproductive and respiratory syndrome virus nucleocapsid protein and the role of disulfide linkages. J. Virol. 77, 4546–4557 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Greenberg, C. S., Birckbichler, P. J. & Rice, R. H. Transglutaminases: multifunctional cross-linking enzymes that stabilize tissues. FASEB J. 5, 3071–3077 (1991).

    CAS  Article  Google Scholar 

  27. 27

    Kanaji, T. et al. Primary structure of microbial transglutaminase from Streptoverticillium sp. strain s-8112. J. Biol. Chem. 268, 11565–11572 (1993).

    CAS  PubMed  Google Scholar 

  28. 28

    Kashiwagi, T. et al. Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J. Biol. Chem. 277, 44252–44260 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Jeger, S. et al. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew. Chem. Int. Ed. 49, 9995–9997 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Wu, P. et al. Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc. Natl Acad. Sci. USA 106, 3000–3005 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Drake, P. M. et al. Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjugate Chem. 25, 1331–1341 (2014).

    CAS  Article  Google Scholar 

  32. 32

    Zimmerman, E. S. et al. Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjugate Chem. 25, 351–361 (2014).

    CAS  Article  Google Scholar 

  33. 33

    Sapra, P. et al. Long-term tumor regression induced by an antibody-drug conjugate that targets 5T4, an oncofetal antigen expressed on tumor-initiating cells. Mol. Cancer Ther. 12, 38–47 (2013).

    CAS  Article  Google Scholar 

  34. 34

    Tian, F. et al. A general approach to site-specific antibody drug conjugates. Proc. Natl Acad. Sci. USA 111, 1766–1771 (2014).

    CAS  Article  Google Scholar 

  35. 35

    Sun, M. M. et al. Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjugate Chem. 16, 1282–1290 (2005).

    CAS  Article  Google Scholar 

  36. 36

    Doronina, S. O. et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nature Biotechnol. 21, 778–784 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Beckley, N. S., Lazzareschi, K. P., Chih, H.-W., Sharma, V. K. & Flores, H. L. Investigation into temperature-induced aggregation of an antibody drug conjugate. Bioconjugate Chem. 24, 1674–1683 (2013).

    CAS  Article  Google Scholar 

  38. 38

    Shen, B. Q. et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nature Biotechnol. 30, 184–189 (2012).

    CAS  Article  Google Scholar 

  39. 39

    Lyon, R. P. et al. Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nature Biotechnol. 32, 1059–1062 (2014).

    CAS  Article  Google Scholar 

  40. 40

    Badescu, G. et al. Bridging disulfides for stable and defined antibody drug conjugates. Bioconjugate Chem. 25, 1124–1136 (2014).

    CAS  Article  Google Scholar 

  41. 41

    Nunes, J. P. M. et al. Functional native disulfide bridging enables delivery of a potent, stable and targeted antibody-drug conjugate (ADC). Chem. Commun. 51, 10624–10627 (2015).

    CAS  Article  Google Scholar 

  42. 42

    Maruani, A. et al. A plug-and-play approach to antibody-based therapeutics via a chemoselective dual click strategy. Nature Commun. 6, 6645 (2015).

    CAS  Article  Google Scholar 

  43. 43

    Maruani, A. et al. Site-selective multi-porphyrin attachment enables the formation of a next-generation antibody-based photodynamic therapeutic. Chem. Commun. 51, 15304–15307 (2015).

    CAS  Article  Google Scholar 

  44. 44

    Lee, M. T. W., Maruani, A., Baker, J., Caddick, S. & Chudasama, V. Next-generation disulfide stapling: Reduction and functional re-bridging all in one. Chem. Sci. 7, 799–802 (2016).

    CAS  Article  Google Scholar 

  45. 45

    Hinman, L. M. et al. Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res. 53, 3336–3342 (1993).

    CAS  PubMed  Google Scholar 

  46. 46

    Hamann, P. R. et al. An anti-MUC1 antibody-calicheamicin conjugate for treatment of solid tumors. Choice of linker and overcoming drug resistance. Bioconjugate Chem. 16, 346–353 (2005).

    CAS  Article  Google Scholar 

  47. 47

    Wang, W. et al. Impact of methionine oxidation in human IgG1 Fc on serum half-life of monoclonal antibodies. Mol. Immunol. 48, 860–866 (2011).

    CAS  Article  Google Scholar 

  48. 48

    Zhou, Q. et al. Site-specific antibody-drug conjugation through glycoengineering. Bioconjugate Chem. 25, 510–520 (2014).

    CAS  Article  Google Scholar 

  49. 49

    Li, X., Fang, T. & Boons, G. J. Preparation of well-defined antibody-drug conjugates through glycan remodeling and strain-promoted azide-alkyne cycloadditions. Angew. Chem. Int. Ed. 53, 7179–7182 (2014).

    CAS  Article  Google Scholar 

  50. 50

    Jefferis, R. Glycosylation of recombinant antibody therapeutics. Biotechnol. Prog. 21, 11–16 (2005).

    CAS  Article  Google Scholar 

Download references


We are grateful to UCL, UCLB, NIHR BRC, MRC, BBSRC and EPSRC for support of our work in this area.

Author information



Corresponding authors

Correspondence to Vijay Chudasama or Stephen Caddick.

Ethics declarations

Competing interests

V.C. and S.C. are co-founders and directors of the company ThioLogics.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chudasama, V., Maruani, A. & Caddick, S. Recent advances in the construction of antibody–drug conjugates. Nature Chem 8, 114–119 (2016).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing