Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A threading receptor for polysaccharides

Abstract

Cellulose, chitin and related polysaccharides are key renewable sources of organic molecules and materials. However, poor solubility tends to hamper their exploitation. Synthetic receptors could aid dissolution provided they are capable of cooperative action, for example by multiple threading on a single polysaccharide molecule. Here we report a synthetic receptor designed to form threaded complexes (polypseudorotaxanes) with these natural polymers. The receptor binds fragments of the polysaccharides in aqueous solution with high affinities (Ka up to 19,000 M−1), and is shown—by nuclear Overhauser effect spectroscopy—to adopt the threading geometry. Evidence from induced circular dichroism and atomic force microscopy implies that the receptor also forms polypseudorotaxanes with cellulose and its polycationic analogue chitosan. The results hold promise for polysaccharide solubilization under mild conditions, as well as for new approaches to the design of biologically active molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Receptor design.
Figure 2: 1H NMR evidence for receptor 4 binding oligosaccharides.
Figure 3: Representative ITC data and analysis curves.
Figure 4: AFM studies of receptor 4 + cellulose.
Figure 5: AFM studies of receptor 4 + chitosan.

Similar content being viewed by others

References

  1. Voet, D. & Voet, J. G. Biochemistry (Wiley, 1995).

    Google Scholar 

  2. Klemm, D. et al. Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50, 5438–5466 (2011).

    Article  CAS  Google Scholar 

  3. Klemm, D., Heublein, B., Fink, H. P. & Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005).

    Article  CAS  Google Scholar 

  4. Heinze, T. & Liebert, T. Unconventional methods in cellulose functionalization. Prog. Polym. Sci. 26, 1689–1762 (2001).

    Article  CAS  Google Scholar 

  5. Zhou, C. H., Xia, X., Lin, C. X., Tong, D. S. & Beltramini, J. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem. Soc. Rev. 40, 5588–5617 (2011).

    Article  CAS  Google Scholar 

  6. Pinkert, A., Marsh, K. N., Pang, S. S. & Staiger, M. P. Ionic liquids and their interaction with cellulose. Chem. Rev. 109, 6712–6728 (2009).

    Article  CAS  Google Scholar 

  7. Brunecky, R. et al. Revealing nature's cellulase diversity: the digestion mechanism of Caldicellulosiruptor bescii CelA. Science 342, 1513–1516 (2013).

    Article  CAS  Google Scholar 

  8. Raymo, F. M. & Stoddart, J. F. Interlocked macromolecules. Chem. Rev. 99, 1643–1663 (1999).

    Article  CAS  Google Scholar 

  9. Harada, A., Hashidzume, A., Yamaguchi, H. & Takashima, Y. Polymeric rotaxanes. Chem. Rev. 109, 5974–6023 (2009).

    Article  CAS  Google Scholar 

  10. Barwell, N. P., Crump, M. P. & Davis, A. P. A synthetic lectin for beta-glucosyl. Angew. Chem. Int. Ed. 48, 7673–7676 (2009).

    Article  CAS  Google Scholar 

  11. Ferrand, Y. et al. A synthetic lectin for O-linked beta-N-acetylglucosamine. Angew. Chem. Int. Ed. 48, 1775–1779 (2009).

    Article  CAS  Google Scholar 

  12. Ferrand, Y., Crump, M. P. & Davis, A. P. A synthetic lectin analog for biomimetic disaccharide recognition. Science 318, 619–622 (2007).

    Article  CAS  Google Scholar 

  13. Sookcharoenpinyo, B. et al. High-affinity disaccharide binding by tricyclic synthetic lectins. Angew. Chem. Int. Ed. 51, 4586–4590 (2012).

    Article  CAS  Google Scholar 

  14. Newkome, G. R. & Shreiner, C. Dendrimers derived from 1 → 3 branching motifs. Chem. Rev. 110, 6338–6442 (2010).

    Article  CAS  Google Scholar 

  15. Diederich, F. & Felber, B. Supramolecular chemistry of dendrimers with functional cores. Proc. Natl Acad. Sci. USA 99, 4778–4781 (2002).

    Article  CAS  Google Scholar 

  16. Casas-Solvas, J. M., Mooibroek, T. J., Sandramurthy, S., Howgego, J. D. & Davis, A. P. A practical, large-scale synthesis of pyrene-2-carboxylic acid. Synlett 25, 2591–2594 (2014).

    Article  CAS  Google Scholar 

  17. Destecroix, H. et al. Affinity enhancements by dendritic side-chains in synthetic carbohydrate receptors. Angew. Chem. Int. Ed. 54, 2057–2061 (2015).

    Article  CAS  Google Scholar 

  18. Ambrosi, M., Cameron, N. R. & Davis, B. G. Lectins: tools for the molecular understanding of the glycocode. Org. Biomol. Chem. 3, 1593–1608 (2005).

    Article  CAS  Google Scholar 

  19. Toone, E. J. Structure and energetics of protein–carbohydrate complexes. Curr. Opin. Struct. Biol. 4, 719–728 (1994).

    Article  CAS  Google Scholar 

  20. Flugge, L. A., Blank, J. T. & Petillo, P. A. Isolation, modification, and NMR assignments of a series of cellulose oligomers. J. Am. Chem. Soc. 121, 7228–7238 (1999).

    Article  CAS  Google Scholar 

  21. Roslund, M. U., Tahtinen, P., Niemitz, M. & Sjoholm, R. Complete assignments of the H-1 and C-13 chemical shifts and J(H,H) coupling constants in NMR spectra of D-glucopyranose and all D-glucopyranosyl-D-glucopyranosides. Carbohydr. Res. 343, 101–112 (2008).

    Article  CAS  Google Scholar 

  22. Isogai, A. & Atalla, R. H. Dissolution of cellulose in aqueous NaOH solutions. Cellulose 5, 309–319 (1998).

    Article  CAS  Google Scholar 

  23. Kumar, M., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H. & Domb, A. J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104, 6017–6084 (2004).

    Article  Google Scholar 

  24. Kharkar, P. M., Kiick, K. L. & Kloxin, A. M. Designing degradable hydrogels for orthogonal control of cell microenvironments. Chem. Soc. Rev. 42, 7335–7372 (2013).

    Article  CAS  Google Scholar 

  25. Theis, T. & Stahl, U. Antifungal proteins: targets, mechanisms and prospective applications. Cell. Mol. Life Sci. 61, 437–455 (2004).

    Article  CAS  Google Scholar 

  26. Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3349–3391 (2000).

    Article  Google Scholar 

  27. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission (Marie Curie Fellowship to J.M.C.-S.), and by the Engineering and Physical Sciences Research Council (EPSRC) through grant number EP/I028501/1 and a studentship to C.M.R. funded via the Bristol Chemical Synthesis Doctoral Training Centre (EP/G036764/1). PeakForce AFM was carried out in the Chemical Imaging Facility, University of Bristol, with equipment funded by the Engineering and Physical Sciences Research Council under grant ‘Atoms to Applications’ grant ref. (EP/K035746/1).

Author information

Authors and Affiliations

Authors

Contributions

J.M.C.-S. and T.J.M. performed the synthetic work. T.J.M. performed NMR and ITC binding studies, C.M.R. performed some ITC studies and T.S.C. performed the ICD measurements. T.J.M. and M.P.C. were responsible for the structural NMR work. T.J.M. and R.L.H. performed the AFM analyses. The paper was written by T.J.M. and A.P.D. with input from the other authors. A.P.D. designed the receptor and directed the study.

Corresponding author

Correspondence to Anthony P. Davis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mooibroek, T., Casas-Solvas, J., Harniman, R. et al. A threading receptor for polysaccharides. Nature Chem 8, 69–74 (2016). https://doi.org/10.1038/nchem.2395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2395

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing