Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Site-selective protein-modification chemistry for basic biology and drug development

Abstract

Nature has produced intricate machinery to covalently diversify the structure of proteins after their synthesis in the ribosome. In an attempt to mimic nature, chemists have developed a large set of reactions that enable post-expression modification of proteins at pre-determined sites. These reactions are now used to selectively install particular modifications on proteins for many biological and therapeutic applications. For example, they provide an opportunity to install post-translational modifications on proteins to determine their exact biological roles. Labelling of proteins in live cells with fluorescent dyes allows protein uptake and intracellular trafficking to be tracked and also enables physiological parameters to be measured optically. Through the conjugation of potent cytotoxicants to antibodies, novel anti-cancer drugs with improved efficacy and reduced side effects may be obtained. In this Perspective, we highlight the most exciting current and future applications of chemical site-selective protein modification and consider which hurdles still need to be overcome for more widespread use.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conceptual strategy to achieve site-selective protein-modification using biocompatible chemical reactions in vitro and in vivo.
Figure 2: Chemical site-selective installation of PTMs at pre-determined sites on proteins.
Figure 3: Bioorthogonal protein-modification chemistry for live cell imaging applications.
Figure 4: Example of strategies to achieve site-selective PEGylation of proteins.
Figure 5: Site-selective protein-modification reactions suitable for the synthesis of antibody–drug conjugates (ADCs).
Figure 6: Bioorthogonal approaches to in situ protein activation.

Similar content being viewed by others

References

  1. Walsh, C. T., Garneau-Tsodikova, S. & Gatto, G. J. Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. 44, 7342–7372 (2005).

    CAS  Google Scholar 

  2. Stephanopoulos, N. & Francis, M. B. Choosing an effective protein bioconjugation strategy. Nature Chem. Biol. 7, 876–884 (2011).

    CAS  Google Scholar 

  3. Chalker, J. M., Bernardes, G. J. L., Lin, Y. A. & Davis, B. G. Chemical modification of proteins at cysteine: opportunities in chemistry and biology. Chem. Asian J. 4, 630–640 (2009).

    CAS  PubMed  Google Scholar 

  4. Gaertner, H. F. & Offord, R. E. Site-specific attachment of functionalized poly(ethylene glycol) to the amino terminus of proteins. Bioconjugate Chem. 7, 38–44 (1996).

    CAS  Google Scholar 

  5. Dawson, P., Muir, T., Clark-Lewis, I. & Kent, S. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    CAS  PubMed  Google Scholar 

  6. Xie, J. & Schultz, P. G. A chemical toolkit for proteins — an expanded genetic code. Nature Rev. Mol. Cell Biol. 7, 775–782 (2006).

    CAS  Google Scholar 

  7. Davis, L. & Chin, J. W. Designer proteins: applications of genetic code expansion in cell biology. Nature Rev. Mol. Cell Biol. 13, 168–182 (2012).

    CAS  Google Scholar 

  8. Lang, K. & Chin, J. W. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev. 114, 4764–4806 (2014).

    CAS  PubMed  Google Scholar 

  9. Sletten, E. M. & Bertozzi, C. R. Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974–6998 (2009).

    CAS  Google Scholar 

  10. Elliott, T. S. et al. Proteome labeling and protein identification in specific tissues and at specific developmental stages in an animal. Nature Biotech. 32, 465–472 (2014).

    CAS  Google Scholar 

  11. Schumacher, D. & Hackenberger, C. P. R. More than add-on: chemoselective reactions for the synthesis of functional peptides and proteins. Curr. Opin. Chem. Biol. 22, 62–69 (2014).

    CAS  PubMed  Google Scholar 

  12. Spicer, C. D. & Davis, B. G. Selective chemical protein modification. Nature Commun. 5, 4740 (2014).

    CAS  Google Scholar 

  13. Arur, S. & Schedl, T. Generation and purification of highly specific antibodies for detecting post-translationally modified proteins in vivo. Nature Protoc. 9, 375–395 (2014).

    CAS  Google Scholar 

  14. Burckstummer, T. et al. An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nature Methods 3, 1013–1019 (2006).

    PubMed  Google Scholar 

  15. Wang, P. et al. Erythropoietin derived by chemical synthesis. Science 342, 1357–1360 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Muir, T. W., Sondhi, D. & Cole, P. A. Expressed protein ligation: a general method for protein engineering. Proc. Natl Acad. Sci. USA 95, 6705–6710 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fierz, B. & Muir, T. W. Chromatin as an expansive canvas for chemical biology. Nature Chem. Biol. 8, 417–427 (2012).

    CAS  Google Scholar 

  18. Casadio, F. et al. H3R42me2a is a histone modification with positive transcriptional effects. Proc. Natl Acad. Sci. USA 110, 14894–14899 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kee, J.-M., Oslund, R. C., Perlman, D. H. & Muir, T. W. A pan-specific antibody for direct detection of protein histidine phosphorylation. Nature Chem. Biol. 9, 416–421 (2013).

    CAS  Google Scholar 

  20. Chalker, J. M. et al. Methods for converting cysteine to dehydroalanine on peptides and proteins. Chem. Sci. 2, 1666–1676 (2011).

    CAS  Google Scholar 

  21. Chooi, K. P. et al. Synthetic phosphorylation of p38α recapitulates protein kinase activity. J. Am. Chem. Soc. 136, 1698–1701 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Serwa, R. et al. Chemoselective Staudinger-phosphite reaction of azides for the phosphorylation of proteins. Angew. Chem. Int. Ed. 48, 8234–8239 (2009).

    CAS  Google Scholar 

  23. Chalker, J. M., Lercher, L., Rose, N. R., Schofield, C. J. & Davis, B. G. Conversion of cysteine into dehydroalanine enables access to synthetic histones bearing diverse post-translational modifications. Angew. Chem. Int. Ed. 51, 1835–1839 (2012).

    CAS  Google Scholar 

  24. Simon, M. D. et al. The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128, 1003–1012 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Huang, R. et al. Site-specific introduction of an acetyl-lysine mimic into peptides and proteins by cysteine alkylation. J. Am. Chem. Soc. 132, 9986–9987 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chatterjee, C., McGinty, R. K., Fierz, B. & Muir, T. W. Disulfide-directed histone ubiquitylation reveals plasticity in hDot1L activation. Nature Chem. Biol. 6, 267–269 (2010).

    CAS  Google Scholar 

  27. Li, F. et al. A direct method for site-specific protein acetylation. Angew. Chem. Int. Ed. 50, 9611–9614 (2011).

    CAS  Google Scholar 

  28. Virdee, S. et al. Traceless and site-specific ubiquitination of recombinant proteins. J. Am. Chem. Soc. 133, 10708–10711 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Virdee, S., Ye, Y., Nguyen, D. P., Komander, D. & Chin, J. W. Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Nature Chem. Biol. 6, 750–757 (2010).

    CAS  Google Scholar 

  30. Madrzak, J. et al. Ubiquitination of the dishevelled DIX domain blocks its head-to-tail polymerization. Nature Commun. 6, 6718 (2015).

    CAS  Google Scholar 

  31. Schneider, T. et al. Dissecting ubiquitin signaling with linkage-defined and protease resistant ubiquitin chains. Angew. Chem. Int. Ed. 53, 12925–12929 (2014).

    CAS  Google Scholar 

  32. Hemantha, H. P. et al. Nonenzymatic polyubiquitination of expressed proteins. J. Am. Chem. Soc. 136, 2665–2673 (2014).

    CAS  PubMed  Google Scholar 

  33. van Kasteren, S. I. et al. Expanding the diversity of chemical protein modification allows post-translational mimicry. Nature 446, 1105–1109 (2007).

    CAS  PubMed  Google Scholar 

  34. Neumann, H. et al. A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol. Cell 36, 153–163 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Perols, A. et al. Influence of DOTA chelator position on biodistribution and targeting properties of 111In-labeled synthetic anti-HER2 affibody molecules. Bioconjugate Chem. 23, 1661–1670 (2012).

    CAS  Google Scholar 

  36. Junutula, J. R. et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nature Biotech. 26, 925–932 (2008).

    CAS  Google Scholar 

  37. Sachdeva, A., Wang, K., Elliott, T. & Chin, J. W. Concerted, rapid, quantitative, and site-specific dual labeling of proteins. J. Am. Chem. Soc. 136, 7785–7788 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tyagi, S. & Lemke, E. A. in Methods in Cell Biology, Vol. 113 (ed. Michael Conn, P.) Ch. 9, 169–187 (Academic Press, 2013).

    Google Scholar 

  39. Wang, K. et al. Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET. Nature Chem. 6, 393–403 (2014).

    CAS  Google Scholar 

  40. Lang, K. et al. Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nature Chem. 4, 298–304 (2012).

    CAS  Google Scholar 

  41. Zheng, S., Zhang, G., Li, J. & Chen, P. R. Monitoring endocytic trafficking of anthrax lethal factor by precise and quantitative protein labeling. Angew. Chem. Int. Ed. 53, 6449–6453 (2014).

    CAS  Google Scholar 

  42. Zeglis, B. M. et al. A pretargeted pet imaging strategy based on bioorthogonal Diels–Alder click chemistry. J. Nucl. Med. 54, 1389–1396 (2013).

    CAS  PubMed  Google Scholar 

  43. Rashidian, M. et al. Use of 18F-2-fluorodeoxyglucose to label antibody fragments for immuno-positron emission tomography of pancreatic cancer. ACS Cent. Sci. 1, 142–147 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Rossin, R., Läppchen, T., van den Bosch, S. M., Laforest, R. & Robillard, M. S. Diels–Alder reaction for tumor pretargeting: in vivo chemistry can boost tumor radiation dose compared with directly labeled antibody. J. Nucl. Med. 54, 1989–1995 (2013).

    CAS  PubMed  Google Scholar 

  45. Seitchik, J. L. et al. Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. J. Am. Chem. Soc. 134, 2898–2901 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yang, M. et al. Converting a solvatochromic fluorophore into a protein-based pH indicator for extreme acidity. Angew. Chem. Int. Ed. 51, 7674–7679 (2012).

    CAS  Google Scholar 

  47. Chari, R. V. J., Miller, M. L. & Widdison, W. C. Antibody–drug conjugates: an emerging concept in cancer therapy. Angew. Chem. Int. Ed. 53, 3796–3827 (2014).

    CAS  Google Scholar 

  48. Pasut, G. & Veronese, F. M. PEG conjugates in clinical development or use as anticancer agents: an overview. Adv. Drug Deliv. Rev. 61, 1177–1188 (2009).

    CAS  PubMed  Google Scholar 

  49. Alconcel, S. N. S., Baas, A. S. & Maynard, H. D. FDA-approved poly(ethylene glycol)–protein conjugate drugs. Polym. Chem. 2, 1442–1448 (2011).

    CAS  Google Scholar 

  50. Keefe, A. J. & Jiang, S. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nature Chem. 4, 59–63 (2012).

    CAS  Google Scholar 

  51. Pelegri-O'Day, E. M., Lin, E.-W. & Maynard, H. D. Therapeutic protein–polymer conjugates: advancing beyond pegylation. J. Am. Chem. Soc. 136, 14323–14332 (2014).

    CAS  PubMed  Google Scholar 

  52. Gilmore, J. M., Scheck, R. A., Esser-Kahn, A. P., Joshi, N. S. & Francis, M. B. N-terminal protein modification through a biomimetic transamination reaction. Angew. Chem. Int. Ed. 45, 5307–5311 (2006).

    CAS  Google Scholar 

  53. MacDonald, J. I., Munch, H. K., Moore, T. & Francis, M. B. One-step site-specific modification of native proteins with 2-pyridinecarboxyaldehydes. Nature Chem. Biol. 11, 326–331 (2015).

    CAS  Google Scholar 

  54. Cho, H. et al. Optimized clinical performance of growth hormone with an expanded genetic code. Proc. Natl Acad. Sci. USA 108, 9060–9065 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chari, R. V. J. et al. Immunoconjugates containing novel maytansinoids: promising anticancer drugs. Cancer Res. 52, 127–131 (1992).

    CAS  PubMed  Google Scholar 

  56. Beckley, N. S., Lazzareschi, K. P., Chih, H.-W., Sharma, V. K. & Flores, H. L. Investigation into temperature-induced aggregation of an antibody drug conjugate. Bioconjugate Chem. 24, 1674–1683 (2013).

    CAS  Google Scholar 

  57. Hamblett, K. J. et al. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res. 10, 7063–7070 (2004).

    CAS  PubMed  Google Scholar 

  58. Shen, B.-Q. et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nature Biotech. 30, 184–189 (2012).

    CAS  Google Scholar 

  59. Steiner, M. et al. Spacer length shapes drug release and therapeutic efficacy of traceless disulfide-linked ADCs targeting the tumor neovasculature. Chem. Sci. 4, 297–302 (2013).

    CAS  Google Scholar 

  60. Cal, P. M. S. D., Bernardes, G. J. L. & Gois, P. M. P. Cysteine-selective reactions for antibody conjugation. Angew. Chem. Int. Ed. 53, 10585–10587 (2014).

    CAS  Google Scholar 

  61. Lyon, R. P. et al. Self-hydrolyzing maleimides improve the stability and pharmacological properties of antibody-drug conjugates. Nature Biotech. 32, 1059–1062 (2014).

    CAS  Google Scholar 

  62. Tumey, L. N. et al. Mild method for succinimide hydrolysis on ADCs: impact on adc potency, stability, exposure, and efficacy. Bioconjugate Chem. 25, 1871–1880 (2014).

    CAS  Google Scholar 

  63. Toda, N., Asano, S. & Barbas, C. F. Rapid, stable, chemoselective labeling of thiols with Julia-Kocieński-like reagents: a serum-stable alternative to maleimide-based protein conjugation. Angew. Chem. Int. Ed. 52, 12592–12596 (2013).

    CAS  Google Scholar 

  64. Bernardes, G. J. L., Chalker, J. M., Errey, J. C. & Davis, B. G. Facile conversion of cysteine and alkyl cysteines to dehydroalanine on protein surfaces: versatile and switchable access to functionalized proteins. J. Am. Chem. Soc. 130, 5052–5053 (2008).

    CAS  PubMed  Google Scholar 

  65. Axup, J. Y. et al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc. Natl Acad. Sci. USA 109, 16101–16106 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tian, F. et al. A general approach to site-specific antibody drug conjugates. Proc. Natl Acad. Sci. USA 111, 1766–1771 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Agarwal, P., van der Weijden, J., Sletten, E. M., Rabuka, D. & Bertozzi, C. R. A Pictet–Spengler ligation for protein chemical modification. Proc. Natl Acad. Sci. USA 110, 46–51 (2013).

    PubMed  Google Scholar 

  68. Drake, P. M. et al. Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Bioconjugate Chem. 25, 1331–1341 (2014).

    CAS  Google Scholar 

  69. Li, J. et al. Palladium-triggered deprotection chemistry for protein activation in living cells. Nature Chem. 6, 352–361 (2014).

    CAS  Google Scholar 

  70. Li, J., Jia, S. & Chen, P. R. Diels–Alder reaction–triggered bioorthogonal protein decaging in living cells. Nature Chem. Biol. 10, 1003–1005 (2014).

    CAS  Google Scholar 

  71. Versteegen, R. M., Rossin, R., ten Hoeve, W., Janssen, H. M. & Robillard, M. S. Click to release: instantaneous doxorubicin elimination upon tetrazine ligation. Angew. Chem. Int. Ed. 52, 14112–14116 (2013).

    CAS  Google Scholar 

  72. Nguyen, D. P. et al. Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J. Am. Chem. Soc. 136, 2240–2243 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Arbely, E., Torres-Kolbus, J., Deiters, A. & Chin, J. W. Photocontrol of tyrosine phosphorylation in mammalian cells via genetic encoding of photocaged tyrosine. J. Am. Chem. Soc. 134, 11912–11915 (2012).

    CAS  PubMed  Google Scholar 

  74. Liu, W., Brock, A., Chen, S., Chen, S. & Schultz, P. G. Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nature Methods 4, 239–244 (2007).

    CAS  PubMed  Google Scholar 

  75. Goodman, C. Making sense of nonsense. Nature Chem. Biol. 10, 167–167 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank FCT Portugal (FCT Investigator to G.J.L.B.), the EU (Marie-Curie CIG to G.J.L.B. and Marie-Curie IEF to O.B.) and the EPSRC for funding. G.J.L.B. is a Royal Society University Research Fellow. Owing to space limitations, many primary and historical publications have not been cited, in particular in those cases where topical reviews are available.

Author information

Authors and Affiliations

Authors

Contributions

N.K. and G.J.L.B. developed the concept, researched and wrote the manuscript. F.P.C. designed and produced the figures, and F.P.C. and O.B. assisted with writing the manuscript.

Corresponding author

Correspondence to Gonçalo J. L. Bernardes.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krall, N., da Cruz, F., Boutureira, O. et al. Site-selective protein-modification chemistry for basic biology and drug development. Nature Chem 8, 103–113 (2016). https://doi.org/10.1038/nchem.2393

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2393

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing