Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection


The use of multivalent carbohydrate compounds to block cell-surface lectin receptors is a promising strategy to inhibit the entry of pathogens into cells and could lead to the discovery of novel antiviral agents. One of the main problems with this approach, however, is that it is difficult to make compounds of an adequate size and multivalency to mimic natural systems such as viruses. Hexakis adducts of [60]fullerene are useful building blocks in this regard because they maintain a globular shape at the same time as allowing control over the size and multivalency. Here we report water-soluble tridecafullerenes decorated with 120 peripheral carbohydrate subunits, so-called ‘superballs’, that can be synthesized efficiently from hexakis adducts of [60]fullerene in one step by using copper-catalysed azide–alkyne cycloaddition click chemistry. Infection assays show that these superballs are potent inhibitors of cell infection by an artificial Ebola virus with half-maximum inhibitory concentrations in the subnanomolar range.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of azide-substituted glycofullerene 9 appended with a long linker and mannose as the carbohydrate unit.
Figure 2: Synthetic pathway to azide-substituted glycofullerenes 15a and 15b with a short spacer.
Figure 3: Syntheses of the tridecafullerenes 17a17c using CuAAC click chemistry.
Figure 4: 13C NMR spectrum of tridecafullerene 17a in DMSO-d6.
Figure 5: TEM images and DLS analysis of tridecafullerene 17a.
Figure 6: Biological study of tridecafullerenes 17a17c.


  1. Mammen, M., Choi, S.-K. & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998).

    Article  Google Scholar 

  2. Guo, Y. et al. Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nature Struct. Mol. Biol. 11, 591–598 (2004).

    Article  CAS  Google Scholar 

  3. Imperiali, B. The chemistry–glycobiology frontier. J. Am. Chem. Soc. 134, 17835–17839 (2012).

    Article  CAS  Google Scholar 

  4. Fasting, C. et al. Multivalency as a chemical organization and action principle. Angew. Chem. Int. Ed. 51, 10472–10498 (2012).

    Article  CAS  Google Scholar 

  5. Imberty, A., Chabre, Y. M. & Roy, R. Glycomimetics and glycodendrimers as high affinity microbial anti-adhesins. Chem. Eur. J. 14, 7490–7499 (2008).

    Article  CAS  Google Scholar 

  6. Roy, R. A decade of glycodendrimer chemistry. Trends Glycosci. Glycotechnol. 15, 291–310 (2003).

    Article  CAS  Google Scholar 

  7. Roy, R. & Baek, M.-G. Glycodendrimers: novel glycotope isosteres unmasking sugar coding. Case study with T-antigen markers from breast cancer MUC1 glycoprotein. Rev. Mol. Biotechnol. 90, 291–309 (2002).

    Article  CAS  Google Scholar 

  8. Chabre, Y. M. & Roy, R. in Advances in Carbohydrate Chemistry and Biochemistry Vol. 63 (ed. Derek, H.) 165–393 (Academic Press, 2010).

    Google Scholar 

  9. Cecioni, S., Imberty, A. & Vidal, S. Glycomimetics versus multivalent glycoconjugates for the design of high affinity lectin ligands. Chem. Rev. 115, 525–561 (2015).

    Article  CAS  Google Scholar 

  10. Hirsch, A. & Vostrowsky, O. C60 hexakisadducts with an octahedral addition pattern—a new structure motif in organic chemistry. Eur. J. Org. Chem. 2001, 829–848 (2001).

    Article  Google Scholar 

  11. Lamparth, I., Maichle–Mössmer, C. & Hirsch, A. Reversible template-directed activation of equatorial double bonds of the fullerene framework: regioselective direct synthesis, crystal structure, and aromatic properties of Th-C66(COOEt)12 . Angew. Chem. Int. Ed. Engl. 34, 1607–1609 (1995).

    Article  CAS  Google Scholar 

  12. Hirsch, A. in Fullerenes and Related Structures (ed. Hirsch, A.) 1–65 (Topics in Current Chemistry 199, Springer, 1999).

    Book  Google Scholar 

  13. Iehl, J., Pereira de Freitas, R., Delavaux-Nicot, B. & Nierengarten, J.-F. Click chemistry for the efficient preparation of functionalized [60]fullerene hexakis-adducts. Chem. Commun. 2450–2452 (2008).

  14. Nierengarten, J.-F. et al. Fullerene sugar balls. Chem. Commun. 46, 3860–3862 (2010).

    Article  CAS  Google Scholar 

  15. Sánchez-Navarro, M., Muñoz, A., Illescas, B. M., Rojo, J. & Martín, N. [60]Fullerene as multivalent scaffold efficient molecular recognition of globular glycofullerenes by concanavalin A. Chem. Eur. J. 17, 766–769 (2011).

    Article  Google Scholar 

  16. Rísquez-Cuadro, R., García Fernández, J. M., Nierengarten, J.-F. & Ortiz Mellet, C. Fullerene-sp2-iminosugar balls as multimodal ligands for lectins and glycosidases: a mechanistic hypothesis for the inhibitory multivalent effect. Chem. Eur. J. 19, 16791–16803 (2013).

    Article  Google Scholar 

  17. Cecioni, S. et al. Synthesis of dodecavalent fullerene-based glycoclusters and evaluation of their binding properties towards a bacterial lectin. Chem. Eur. J. 17, 3252–3261 (2011).

    Article  CAS  Google Scholar 

  18. Nierengarten, I. & Nierengarten, J.-F. Fullerene sugar balls: a new class of biologically active fullerene derivatives. Chem. Asian J. 9, 1436–1444 (2014).

    Article  CAS  Google Scholar 

  19. Durka, M. et al. The functional valency of dodecamannosylated fullerenes with Escherichia coli FimH-towards novel bacterial antiadhesives. Chem. Commun. 47, 1321–1323 (2011).

    Article  CAS  Google Scholar 

  20. Luczkowiak, J. et al. Glycofullerenes inhibit viral infection. Biomacromolecules 14, 431–437 (2013).

    Article  CAS  Google Scholar 

  21. Hörmann, F. & Hirsch, A. Giant fullerene polyelectrolytes composed of C60 building blocks with an octahedral addition pattern and discovery of a new cyclopropanation reaction involving dibromomalonates. Chem. Eur. J. 19, 3188–3197 (2013).

    Article  Google Scholar 

  22. Wasserthal, L. K., Kratzer, A. & Hirsch, A. Sequential fullerenylation of bis-malonates—efficient access to oligoclusters with different fullerene building blocks. Eur. J. Org. Chem. 2013, 2355–2361 (2013).

    Article  CAS  Google Scholar 

  23. Balbinot, D. et al. Electrostatic assemblies of fullerene−porphyrin hybrids: toward long-lived charge separation. J. Phys. Chem. B 107, 13273–13279 (2003).

    Article  CAS  Google Scholar 

  24. Wessendorf, F. et al. Implementation of a Hamilton-receptor-based hydrogen-bonding motif toward a new electron donor−acceptor prototype: electron versus energy transfer. J. Am. Chem. Soc. 129, 16057–16071 (2007).

    Article  CAS  Google Scholar 

  25. Durka, M. et al. The inhibition of liposaccharide heptosyltransferase WaaC with multivalent glycosylated fullerenes: a new mode of glycosyltransferase inhibition. Chem. Eur. J. 18, 641–651 (2012).

    Article  CAS  Google Scholar 

  26. Ciampi, S. et al. Functionalization of acetylene-terminated monolayers on Si(100) surfaces: a click chemistry approach. Langmuir 23, 9320–9329 (2007).

    Article  CAS  Google Scholar 

  27. Collman, J. P., Devaraj, N. K., Eberspacher, T. P. A. & Chidsey, C. E. D. Mixed azide-terminated monolayers: a platform for modifying electrode surfaces. Langmuir 22, 2457–2464 (2006).

    Article  CAS  Google Scholar 

  28. Devaraj, N. K., Decreau, R. A., Ebina, W., Collman, J. P. & Chidsey, C. E. D. Rate of interfacial electron transfer through the 1,2,3-triazole linkage. J. Phys. Chem. B 110, 15955–15962 (2006).

    Article  CAS  Google Scholar 

  29. Alvarez, C. P. et al. C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J. Virol. 76, 6841–6844 (2002).

    Article  CAS  Google Scholar 

  30. Kondratowicz, A. S. et al. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvirus. Proc. Natl Acad. Sci. USA 108, 8426–8431 (2011).

    Article  CAS  Google Scholar 

  31. Carette, J. E. et al. Ebola virus entry requires the cholesterol transporter Niemann–Pick C1. Nature 477, 340–343 (2011).

    Article  CAS  Google Scholar 

  32. Ribeiro-Viana, R. et al. Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection. Nature Commun. 3, 1303 (2012).

    Article  Google Scholar 

  33. Yang, S. L. et al. Generation of retroviral vector for clinical studies using transient transfection. Hum. Gene Ther. 10, 123–132 (1999).

    Article  CAS  Google Scholar 

  34. Connor, R. I., Chen, B. K., Choe, S. & Landau, N. R. Vpr is required for efficient replication of Human-Immuno-Deficiency-Virus Type-1 in mononuclear phagocytes. Virology 206, 935–944 (1995).

    Article  CAS  Google Scholar 

  35. Luczkowiak, J. et al. Pseudosaccharide functionalized dendrimers as potent inhibitors of DC-SIGN dependent Ebola pseudotyped viral infection. Bioconjugate Chem. 22, 1354–1365 (2011).

    Article  CAS  Google Scholar 

  36. Lasala, F., Arce, E., Otero, J. R., Rojo, J. & Delgado, R. Mannosyl glycodendritic structure inhibits DC-SIGN-mediated Ebola virus infection in cis and in trans. Antimicrob. Agents Chemother. 47, 3970–3972 (2003).

    Article  CAS  Google Scholar 

Download references


Financial support by the European Research Council (ERC-2012-ADG_320441 (Chirallcarbon), ITN-2008-213592 (CARMUSYS)), Ministerio de Economía y Competitividad (MINECO) of Spain (projects CTQ2014-52045-R, CTQ2011-23410 and CTQ2012-31914), the Comunidad Autónoma de Madrid (PHOTOCARBON project S2013/MIT-2841), Instituto de Salud Carlos III (ISCIII) (FIS PI1101580 and FIS1400708), the Agence National de la Recherche (ANR, Programme Blanc 2011), the International Center for Frontier Research in Chemistry and LabEx ‘Chimie des Systèmes Complexes’ is acknowledged. N.M. thanks the Alexander von Humboldt Foundation. S.P.V. and K.B. thank FNRS (FRIA fellowship).

Author information

Authors and Affiliations



A.M., D.S., I.N., M.H. and K.B. carried out the synthesis and characterization of all the new derivatives. L.R.-P. and J.-S.R. realized and analysed the DLS and TEM. L.R.-P. realized the XPS analyses and contributed to the writing of the paper. J.L. and R.D. realized the biological and cytotoxicity studies. B.M.I., S.P.V., J.R., R.D., J.-F.N. and N.M. designed the project, supervised the work, discussed the data and wrote the manuscript.

Corresponding authors

Correspondence to Javier Rojo, Rafael Delgado, Jean-François Nierengarten or Nazario Martín.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4365 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muñoz, A., Sigwalt, D., Illescas, B. et al. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection. Nature Chem 8, 50–57 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research