Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic formal [2+2+1] synthesis of pyrroles from alkynes and diazenes via TiII/TiIV redox catalysis

This article has been updated

Abstract

Pyrroles are structurally important heterocycles. However, the synthesis of polysubstituted pyrroles is often challenging. Here, we report a multicomponent, Ti-catalysed formal [2+2+1] reaction of alkynes and diazenes for the oxidative synthesis of penta- and trisubstituted pyrroles: a nitrenoid analogue to classical Pauson–Khand-type syntheses of cyclopentenones. Given the scarcity of early transition-metal redox catalysis, preliminary mechanistic studies are presented. Initial stoichiometric and kinetic studies indicate that the mechanism of this reaction proceeds through a formally TiII/TiIV redox catalytic cycle, in which an azatitanacyclobutene intermediate, resulting from [2+2] alkyne + Ti imido coupling, undergoes a second alkyne insertion followed by reductive elimination to yield pyrrole and a TiII species. The key component for catalytic turnover is the reoxidation of the TiII species to a TiIV imido via the disproportionation of an η2-diazene-TiII complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ti-mediated oxidative pyrrole formation.
Figure 2
Figure 3: Mechanism of Ti-catalysed formal [2+2+1] oxidative cyclization of alkynes and diazenes.
Figure 4: Mechanistic scheme explaining selectivity differences between various unsymmetric alkynes.

Similar content being viewed by others

Change history

  • 02 December 2015

    In the original version of this Article published online, the structure of 4n (shown in Table 1) was incorrect. The structure has been corrected in all versions of the Article.

References

  1. Bullock, R. M. Catalysis without Precious Metals (Wiley, 2010).

    Book  Google Scholar 

  2. Mikami, K., Terada, M. & Matsuzawa, H. ‘Asymmetric’ catalysis by lanthanide complexes. Angew. Chem. Int. Ed. 41, 3554–3571 (2002).

    Article  CAS  Google Scholar 

  3. Nishiura, M. & Hou, Z. Novel polymerization catalysts and hydride clusters from rare-earth metal dialkyls. Nature Chem. 2, 257–268 (2010).

    Article  CAS  Google Scholar 

  4. Dudnik, A. S., Weidner, V. L., Motta, A., Delferro, M. & Marks, T. J. Atom-efficient regioselective 1,2-dearomatization of functionalized pyridines by an earth-abundant organolanthanide catalyst. Nature Chem. 6, 1100–1107 (2014).

    Article  CAS  Google Scholar 

  5. Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F. & Tada, M. Hydroamination: direct addition of amines to alkenes and alkynes. Chem. Rev. 108, 3795–3892 (2008).

    Article  PubMed  CAS  Google Scholar 

  6. Odom, A. New C–N and C–C bond forming reactions catalyzed by titanium complexes. Dalton Trans. 225–233 (2005).

  7. Basuli, F., Wicker, B., Huffman, J. C. & Mindiola, D. J. Understanding the role of an easy-to-prepare aldimine-alkyne carboamination catalyst, [Ti(NMe2)3(NHMe2)][B(C6F5)4]. J. Orgomet. Chem. 696, 235–243 (2011).

    Article  CAS  Google Scholar 

  8. Kulinkovich, O. G. The chemistry of cyclopropanols. Chem. Rev. 103, 2597–2632 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Hicks, F. A., Kablaoui, N. M. & Buchwald, S. L. Scope of the intramolecular titanocene-catalyzed Pauson–Khand type reaction. J. Am. Chem. Soc. 121, 5881–5898 (1999).

    Article  CAS  Google Scholar 

  10. Ozerov, O. V., Patrick, B. O. & Lapido, F. T. Highly regioselective [2+2+2] cycloaddition of alkynes catalyzed by η6-arene complexes of titanium supported by dimethylsilyl-bridged p-tert-butyl calix[4]arene ligand. J. Am. Chem. Soc. 122, 6423–6431 (2000).

    Article  CAS  Google Scholar 

  11. Negishi, E., Swanson, D. R., Cederbaum, F. E. & Takahashi, T. Zirconium-promoted bicyclization of enynes. Effects of enyne structure. Tetrahedron Lett. 28, 917–920 (1987).

    Article  CAS  Google Scholar 

  12. Al Dulayymi, J. R., Baird, M. S., Bolesov, I. G., Tveresovsky, V. & Rubin, M. A simple and efficient hydrodehalogenation of 1,1-dihalocyclopropanes. Tetrahedron Lett. 37, 8933–8936 (1996).

    Article  Google Scholar 

  13. Nguyen, A. I., Zarkesh, R. A., Lacy, D. C., Thorson, M. K. & Heyduk, A. F. Catalytic nitrene transfer by a zirconium(IV) redox-active ligand complex. Chem. Sci. 2, 166–169 (2011).

    Article  CAS  Google Scholar 

  14. Baumann, M., Baxendale, I. R., Ley, S. V. & Nikbin, N. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J. Org. Chem. 7, 442–495 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vernitskaya, T. V. & Efimov, O. N. Polypyrrole: a conducting polymer; its synthesis, properties, and applications. Russ. Chem. Rev. 66, 443–457 (1997).

    Article  Google Scholar 

  16. Loudet, A. & Burgess, K. BODIPY dyes and their derivatives: syntheses and spectroscopic studies. Chem. Rev. 107, 4891–4932 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Walsh, C. T., Tsodikova, S. G. & Howard-Jones, A. R. Biological formation of pyrroles: nature's logic and enzymatic machinery. Nat. Prod. Rep. 23, 517–531 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Estévez, V., Villacampa, M. & Menéndez, J. C. Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem. Soc. Rev. 43, 4633–4657 (2014).

    Article  PubMed  Google Scholar 

  19. Martin, R., Larsen, C. H., Cuenca, A. & Buchwald, S. L. Cu-catalyzed tandem C–N bond formation for the synthesis of pyrroles and heteroarylpyrroles. Org. Lett. 9, 3379–3382 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Ramanathan, B., Keith, A. J., Armstrong, D. & Odom, A. L. Pyrrole syntheses based on titanium-catalyzed hydroamination of diynes. Org. Lett. 6, 2957–2960 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Gulevich, A. V., Dudnik, A. S., Cernyak, N. & Gevorgyan, V. Transition metal-mediated synthesis of monocyclic aromatic heterocycles. Chem. Rev. 113, 3084–3213 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yu, S., Xiong, M., Xie, X. & Lui, Y. Insertion of nitriles into zirconocene 1-aza-1,3-diene complexex: chemoselective synthesis of N–H and N-substituted pyrroles. Angew. Chem. Int. Ed. 53, 11596–11599 (2014).

    Article  CAS  Google Scholar 

  23. Nakamoto, M. & Tilley, T. D. Reactions of zirconacyclopentadienes with nitrosobenzene. Characterization of zirconacycle intermediates and formation of N-phenylpyrroles. Organometallics 20, 5515–5517 (2001).

    Article  CAS  Google Scholar 

  24. Rosenthal, U., Burlakov, V. V., Bach, M. A. & Beweries, T. Five-membered metallacycles of titanium and zirconium—attractive compounds for organometallics chemistry and catalysis. Chem. Soc. Rev. 36, 719–728 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, W., Jiang, H. & Huang, L. One-pot silver-catalzyed and PIDA-mediated sequential reactions: synthesis of polysubstituted pyrroles directly from alkynoates and amines. Org. Lett. 12, 312–315 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Blanco-Urgoiti, J., Añorbe, L., Pérez-Serrano, L. & Domínguez, G. The Pauson–Khand reaction, a powerful synthetic tool for the synthesis of complex molecules. Chem. Soc. Rev. 33, 32–42 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Omae, I. Three characteristic reactions of alkynes with metal compounds in organic synthesis. Appl. Organometal. Chem. 22, 149–166 (2008).

    Article  CAS  Google Scholar 

  28. Chopade, P. R. & Louie, J. [2+2+2] cycloaddition reactions catalyzed by transition metals. Adv. Synth. Catal. 348, 2307–2327 (2006).

    Article  CAS  Google Scholar 

  29. Wender, P. A. et al. Inspirations from nature. New reactions, therapeutic leads, and drug delivery systems. Pure Appl. Chem. 75, 143–155 (2003).

    Article  CAS  Google Scholar 

  30. Hill, J. E., Fanwick, P. E. & Rothwell, I. P. Formation of a terminal aryl-imido compound of titanium by cleavage of the N=N double bond in benzo[c]cinnoline. Inorg. Chem. 30, 1143–1144 (1991).

    Article  CAS  Google Scholar 

  31. Tonks, I. A., Meier, J. C. & Bercaw, J. E. Titanium complexes supported by pyridine-bis(phenolate) ligands: active catalysts for intermolecular hydroamination or trimerization of alkynes. Organometallics 32, 3451–3457 (2013).

    Article  CAS  Google Scholar 

  32. Vujokvic, N. et al. Imido-alkyne coupling in titanium complexes: new insight into the alkyne hydroamination reaction. Organometallics 26, 5522–5534 (2007).

    Article  CAS  Google Scholar 

  33. Lokare, K. S., Ciszewski, J. T. & Odom, A. L. Group-6 imido activation by a ring-strained alkyne. Organometallics 23, 5386–5388 (2004).

    Article  CAS  Google Scholar 

  34. Fout, A. R., Kilgore, U. J. & Mindiola, D. J. The recent progression of synthetic strategies to assemble titanium complexes bearing the terminal imide group. Chem. Eur. J. 13, 9428–9440 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Duchateau, R., Williams, A. J., Gambarotta, S. & Chiang, M. Y. Carbon-carbon double-bond formation in the intermolecular acetonitrile reductive coupling promoted by a mononuclear titanium(II) compound. Preparation and characterization of two titanium(IV) imido derivatives. Inorg. Chem. 30, 4863–4866 (1991).

    Article  CAS  Google Scholar 

  36. Gray, S. D., Thorman, J. L., Adamian, V. A., Kadish, K. M. & Woo, L. K. Synthesis, electrochemistry, and imido and transfer reactions of (TTP)Ti(η2-PhN=NPh). Inorg. Chem. 37, 1–4 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Hill, B. J. E., Profile, R. D., Fanwick, P. E. & Rothwell, Z. P. Synthesis, structure, and reactivity of aryloxo(imido)titanium complexes. Angew. Chem. Int. Ed. Engl. 102, 664–665 (1990).

    Article  Google Scholar 

  38. Adams, N. et al. New titanium imido synthons: syntheses and supramolecular structures. Inorg. Chem. 44, 2882–2894 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Blake, A. J. et al. Synthesis and imido-group exchange reactions of tert-butylimidotitanium complexes. J. Chem. Soc. Dalton Trans. 1549–1558 (1997).

  40. Vujkovic, N. et al. Insertions into azatitanacyclobutenes: new insights into three-component coupling raections involving imidotitanium intermediates. Organometallics 27, 2518–2528 (2008).

    Article  CAS  Google Scholar 

  41. Straub, B. F. & Bergman, R. G. The mechanism of hydroamination of allenes, alkynes, and alkenes catalyzed by cyclopentadienyltitanium–imido complexes: a density functional study. Angew. Chem. Int. Ed. 40, 4632–4635 (2001).

  42. Weitershaus, K. et al. Titanium hydroamination catalysts bearing a 2-aminopyrrolinto spectator ligand: monitoring the individual reaction steps. Dalton Trans. 4586–4602 (2009).

  43. Barnea, E., Majumder, S., Staples, R. J. & Odom, A. L. One step route to 2,3-diaminopyrroles using a titanium-catalyzed four-component coupling. Organometallics 28, 3876–3881 (2009).

    Article  CAS  Google Scholar 

  44. Tripepi, G., Young, V. G. Jr & Ellis, J. E. Highly reduced organometallics Part 49. Reaction of hexacarbonyltitanate(2–) with azobenzene. Structural characterization of the first hydroxo-carbonyl of titanium [Ti2(μ-OH)2(CO)8]2−. J. Organomet. Chem. 593–594, 354–360 (2000).

    Article  Google Scholar 

  45. Kaleta, K., Arndt, P., Spannenberg, A. & Rosenthal, U. Unusual bond activation processes in the reaction of group 4 cyclopentadienyl alkyne complexes with azobenzene. Inorg. Chim. Acta 370, 187–190 (2011).

    Article  CAS  Google Scholar 

  46. Kaleta, K. et al. Reactions of group 4 metallocene alkyne complexes with azobenzene: formation of diazametallacyclopropanes and N=N bond activation. Organometallics 29, 2604–2609 (2010).

    Article  CAS  Google Scholar 

  47. Retbøll, M. & Jørgensen, K. A. MO explanation of the structures of azo-transition metal complexes. Inorg. Chem. 33, 6403–6405 (1994).

    Article  Google Scholar 

  48. Goetze, B., Knizek, J., Noth, H. & Schnick, W. 1,2-Bis(trimethylsilyl)hydrazido titanium complexes. Eur. J. Inorg. Chem. 1849–1854 (2000).

  49. Munhá, R. F., Zarkesh, R. A. & Heyduk, A. F. Group transfer reactions of d0 transition metal complexes: redox-active ligands provide a mechanism for expanded reactivity. Dalton Trans. 42, 3751–3766 (2013).

    Article  PubMed  CAS  Google Scholar 

  50. Zarkesh, R. A., Ziller, J. W. & Heyduk, A. F. Four-electron oxidative formation of aryl diazenes using a tantalum redox-active ligand complex. Angew. Chem. Int. Ed. 47, 4715–4718 (2008).

    Article  CAS  Google Scholar 

  51. Mankad, N. P., Müller, P. & Peters, J. C. Catalytic N–N coupling of aryl azides to yield azoarenes via trigonal bipyramid iron–nitrene intermediates. J. Am. Chem. Soc. 132, 4083–4085 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Mansuy, D., Battioni, P. & Mahy, J. P. Isolation of an iron–nitrene complex from dioxygen- and iron poryhrin-dependent oxidation of a hydrazine. J. Am. Chem. Soc. 104, 4487–4489 (1982).

    Article  CAS  Google Scholar 

  53. Gräbe, K., Pohlki, F. & Doye, S. Neutral Ti complexes as catalysts for the hydroamination of alkynes and alkenes: do the labile ligands change the catalytic activity? Eur. J. Org. Chem. 28, 4815–4823 (2008).

    Article  CAS  Google Scholar 

  54. Hicks, F. & Buchwald, S. L. Highly-enantioselective catalytic Pauson–Khand type formation of bicyclic cyclopentenones. J. Am. Chem. Soc. 118, 11688–11689 (1996).

    Article  CAS  Google Scholar 

  55. Yim, J. C. H., Bexrud, J. A., Ayinla, R. O., Leitch, D. C. & Schafer, L. L. Bis(amidate)bis(amido) titanium complex: a regioselective intermolecular alkyne hydroamination catalyst. J. Org. Chem. 79, 2015–2028 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the University of Minnesota (start-up funds). Equipment purchases for the Chemistry Department NMR facility were supported by a grant from the National Institutes of Health (S10OD011952) with matching funds from the University of Minnesota. The Bruker-AXS D8 Venture diffractometer was purchased through a grant from NSF/MRI (1224900) and the University of Minnesota.

Author information

Authors and Affiliations

Authors

Contributions

Z.W.G. and I.A.T. conceived and designed the experiments. Z.W.G. and R.J.H. performed the experiments and analysed the data. I.A.T. wrote the manuscript. All authors contributed to revising the manuscript.

Corresponding author

Correspondence to Ian A. Tonks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4630 kb)

Supplementary information

Crystallographic data for compound 7 (CIF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilbert, Z., Hue, R. & Tonks, I. Catalytic formal [2+2+1] synthesis of pyrroles from alkynes and diazenes via TiII/TiIV redox catalysis. Nature Chem 8, 63–68 (2016). https://doi.org/10.1038/nchem.2386

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2386

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing