Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia

Abstract

Transmembrane anion transporters (anionophores) have potential for new modes of biological activity, including therapeutic applications. In particular they might replace the activity of defective anion channels in conditions such as cystic fibrosis. However, data on the biological effects of anionophores are scarce, and it remains uncertain whether such molecules are fundamentally toxic. Here, we report a biological study of an extensive series of powerful anion carriers. Fifteen anionophores were assayed in single cells by monitoring anion transport in real time through fluorescence emission from halide-sensitive yellow fluorescent protein. A bis-(p-nitrophenyl)ureidodecalin shows especially promising activity, including deliverability, potency and persistence. Electrophysiological tests show strong effects in epithelia, close to those of natural anion channels. Toxicity assays yield negative results in three cell lines, suggesting that promotion of anion transport may not be deleterious to cells. We therefore conclude that synthetic anion carriers are realistic candidates for further investigation as treatments for cystic fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of anionophores.
Figure 2: Evaluation of anionophore-mediated anion transport in YFP-FRT cells by fluorescence microscopy.
Figure 3: Anion transport by the decalin bis-urea 13 is concentration-dependent and persistent.
Figure 4: Anionophores generate persistent apical membrane Cl currents in YFP-FRT epithelia
Figure 5: Evaluation of anionophore toxicity using MDCK, FRT and HeLa cells.

Similar content being viewed by others

References

  1. Sessler, J. L. & Allen, W. E. Anion carriers: new tools for crossing membranes. Chemtech. 29, 16–24 (1999).

    CAS  Google Scholar 

  2. Davis, A. P., Sheppard, D. N. & Smith, B. D. Development of synthetic membrane transporters for anions. Chem. Soc. Rev. 36, 348–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Davis, J. T., Okunola, O. & Quesada, R. Recent advances in the transmembrane transport of anions. Chem. Soc. Rev. 39, 3843–3862 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Busschaert, N. & Gale, P. A. Small-molecule lipid-bilayer anion transporters for biological applications. Angew. Chem. Int. Ed. 52, 1374–1382 (2013).

    Article  CAS  Google Scholar 

  5. Pressman, B. C. Biological applications of ionophores. Ann. Rev. Biochem. 45, 501–530 (1976).

    Article  CAS  PubMed  Google Scholar 

  6. Dutton, C. J., Banks, B. J. & Cooper, C. B. Polyether ionophores. Nat. Prod. Rep. 12, 165–181 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Vargas Jentzsch, A., Hennig, A., Mareda, J. & Matile, S. Synthetic ion transporters that work with anion–π interactions, halogen bonds, and anion–macrodipole interactions. Acc. Chem. Res. 46, 2791–2800 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Gale, P. A., Perez-Tomas, R. & Quesada, R. Anion transporters and biological systems. Acc. Chem. Res. 46, 2801–2813 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Gokel, G. W. & Negin, S. Synthetic ion channels: from pores to biological applications. Acc. Chem. Res. 46, 2824–2833 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Valkenier, H. & Davis, A. P. Making a match for valinomycin: steroidal scaffolds in the design of electroneutral, electrogenic anion carriers. Acc. Chem. Res. 46, 2898–2909 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Wallace, D. P. et al. A synthetic channel-forming peptide induces Cl secretion: modulation by Ca2+-dependent K+ channels. Biochim. Biophys. Acta 1464, 69–82 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Ashcroft, F. M. Ion Channels and Disease (Academic Press, 2000).

    Google Scholar 

  13. Stoltz, D. A., Meyerholz, D. K. & Welsh, M. J. Origins of cystic fibrosis lung disease. N. Engl. J. Med. 372, 351–362 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Jiang, C. W. et al. Partial correction of defective Cl secretion in cystic fibrosis epithelial cells by an analog of squalamine. Am. J. Physiol. Lung Cell Mol. Physiol. 281, L1164–L1172 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Broughman, J. R. et al. Distinct structural elements that direct solution aggregation and membrane assembly in the channel-forming peptide M2GlyR. Biochemistry 41, 7350–7358 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Broughman, J. R. et al. Channel-forming peptide modulates transepithelial electrical conductance and solute permeability. Am. J. Physiol. Cell Physiol. 286, C1312–C1323 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Pajewski, R. et al. A synthetic, chloride-selective channel that alters chloride transport in epithelial cells. Chem. Commun. 329–331 (2006).

  18. Koulov, A. V. et al. Chloride transport across vesicle and cell membranes by steroid-based receptors. Angew. Chem. Int. Ed. 42, 4931–4933 (2003).

    Article  CAS  Google Scholar 

  19. Shen, B., Li, X., Wang, F., Yao, X. Q. & Yang, D. A synthetic chloride channel restores chloride conductance in human cystic fibrosis epithelial cells. PLoS ONE 7, e34694 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sidorov, V. et al. Ion channel formation from a calix 4 arene amide that binds HCl. J. Am. Chem. Soc. 124, 2267–2278 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Sessler, J. L. et al. Synthesis, anion-binding properties, and in vitro anticancer activity of prodigiosin analogues. Angew. Chem. Int. Ed. 44, 5989–5992 (2005).

    Article  CAS  Google Scholar 

  22. de Grenu, B. D. et al. Synthetic prodiginine obatoclax (GX15–070) and related analogues: anion binding, transmembrane transport, and cytotoxicity properties. Chem. Eur. J. 17, 14074–14083 (2011).

    Article  CAS  Google Scholar 

  23. Busschaert, N. et al. Structure–activity relationships in tripodal transmembrane anion transporters: the effect of fluorination. J. Am. Chem. Soc. 133, 14136–14148 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Moore, S. J. et al. Chloride, carboxylate and carbonate transport by ortho-phenylenediamine-based bisureas. Chem. Sci. 4, 103–117 (2013).

    Article  CAS  Google Scholar 

  25. Ko, S. K. et al. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells. Nature Chem. 6, 885–892 (2014).

    Article  CAS  Google Scholar 

  26. Davis, J. T. Anion binding and transport by prodigiosin and its analogs. Top. Heterocyclic Chem. 24, 145–176 (2010).

    Article  CAS  Google Scholar 

  27. Brotherhood, P. R. & Davis, A. P. Steroid-based anion receptors and transporters. Chem. Soc. Rev. 39, 3633–3647 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. McNally, B. A. et al. Structure–activity relationships in cholapod anion carriers: enhanced transmembrane chloride transport through substituent tuning. Chem. Eur. J. 14, 9599–9606 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Edwards, S. J., Valkenier, H., Busschaert, N., Gale, P. A. & Davis, A. P. High affinity anion binding by steroidal squaramide receptors. Angew. Chem. Int. Ed. 54, 4592–4596 (2015).

    Article  CAS  Google Scholar 

  30. Hussain, S., Brotherhood, P. R., Judd, L. W. & Davis, A. P. Diaxial diureido decalins as compact, efficient, and tunable anion transporters. J. Am. Chem. Soc. 133, 1614–1617 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Valkenier, H. et al. Preorganized bis-thioureas as powerful anion carriers: chloride transport by single molecules in large unilamellar vesicles. J. Am. Chem. Soc. 136, 12507–12512 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Cooper, J. A., Street, S. T. G. & Davis, A. P. A flexible solution to anion transport: powerful anionophores based on a cyclohexane scaffold. Angew. Chem. Int. Ed. 53, 5609–5613 (2014).

    Article  CAS  Google Scholar 

  33. McNally, B. A., Koulov, A. V., Smith, B. D., Joos, J. B. & Davis, A. P. A fluorescent assay for chloride transport; identification of a synthetic anionophore with improved activity. Chem. Commun. 1087–1089 (2005).

  34. Clare, J. P. et al. Substrate discrimination by cholapod anion receptors: geometric effects and the ‘affinity-selectivity principle’. J. Am. Chem. Soc. 127, 10739–10746 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Li, X., Shen, B., Yao, X. Q. & Yang, D. A small synthetic molecule forms chloride channels to mediate chloride transport across cell membranes. J. Am. Chem. Soc. 129, 7264–7265 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Verkman, A. S. & Galietta, L. J. V. Chloride channels as drug targets. Nature Rev. Drug Discov. 8, 153–171 (2009).

    Article  CAS  Google Scholar 

  37. Galietta, L. J. V., Haggie, P. M. & Verkman, A. S. Green fluorescent protein-based halide indicators with improved chloride and iodide affinities. FEBS Lett. 499, 220–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Sheppard, D. N., Carson, M. R., Ostedgaard, L. S., Denning, G. M. & Welsh, M. J. Expression of cystic fibrosis transmembrane conductance regulator in a model epithelium. Am. J. Physiol. Lung Cell. Mol. Physiol. 266, L405–L413 (1994).

    Article  CAS  Google Scholar 

  39. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug. Deliv. Rev. 46, 3–26 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Cutting, G. R. Cystic fibrosis genetics: from molecular understanding to clinical application. Nature Rev. Genet. 16, 45–56 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Alton, E. W. F. W. et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet. Respir. Med. 3, 684–691 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ramsey, B. W. et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N. Engl. J. Med. 365, 1663–1672 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wainwright, C. E. et al. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N. Engl. J. Med. 373, 220–231 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mall, M. A. & Galietta, L. J. V. Targeting ion channels in cystic fibrosis. J. Cyst. Fibros. 14, 561–570 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. McLachlan, G. et al. Optimizing aerosol gene delivery and expression in the ovine lung. Mol. Ther. 15, 348–354 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Galietta, L. V. J., Jayaraman, S. & Verkman, A. S. Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists. Am. J. Physiol. Cell Physiol. 281, C1734–C1742 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Li, H., Findlay, I. A. & Sheppard, D. N. The relationship between cell proliferation, Cl secretion, and renal cyst growth: a study using CFTR inhibitors. Kidney Int. 66, 1926–1938 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A.S. Verkman for the gift of FRT cells expressing YFP-H148Q/I152L, the Wolfson Bioimaging Facility (University of Bristol) and M.A. Jepson and A.D. Leard for help and advice. This work was supported by the Engineering and Physical Sciences Research Council (grants nos. EP/F03623X/1 and EP/J00961X/1). O.J. thanks K. Rissanen for a postdoctoral position through the Academy of Finland (grant no. 265328) and the University of Jyväskylä for an international mobility grant.

Author information

Authors and Affiliations

Authors

Contributions

A.P.D., D.N.S. and H.L. conceived and designed the experiments. H.L., H.V., L.W.J., P.R.B., S.H., J.A.C., O.J. and H.A.S. performed the research. A.P.D., D.N.S, H.L. and H.V. analysed the data and co-wrote the manuscript. A.P.D. and D.N.S. directed the study.

Corresponding authors

Correspondence to David N. Sheppard or Anthony P. Davis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2125 kb)

Supplementary information

Crystallographic data for compound 13 (CIF 851 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Valkenier, H., Judd, L. et al. Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia. Nature Chem 8, 24–32 (2016). https://doi.org/10.1038/nchem.2384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2384

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research