Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy

Abstract

Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular crystals under study.
Figure 2: Real part of 2DES spectra for pentacene molecular crystal at different evolution times.
Figure 3: Oscillatory components in the 2DES data.
Figure 4: 2D maps of beatings in 2DES spectra corresponding to the strongest oscillatory features observed in Fig. 3b.
Figure 5: In-depth analysis of 2DES results.
Figure 6: Results of theoretical calculations based on the vibronic model.

Similar content being viewed by others

References

  1. Smith, M. B. & Michl, J. Singlet fission. Chem. Rev. 110, 6891–6936 (2010).

    CAS  PubMed  Google Scholar 

  2. Wilson, M. W. B. et al. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J. Am. Chem. Soc. 133, 11830–11833 (2011).

    CAS  PubMed  Google Scholar 

  3. Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).

    Google Scholar 

  4. Ehrler, B., Wilson, M. W., Rao, A., Friend, R. H. & Greenham, N. Singlet exciton fission-sensitized infrared quantum dot solar cells. Nano Lett. 12, 1053–1057 (2012).

    CAS  PubMed  Google Scholar 

  5. Congreve, D. N. et al. External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell. Science 340, 334–337 (2013).

    CAS  PubMed  Google Scholar 

  6. Burdett, J. J. & Bardeen, C. J. The dynamics of singlet fission in crystalline tetracene and covalent analogs. Acc. Chem. Res. 46, 1312–1320 (2013).

    CAS  PubMed  Google Scholar 

  7. Dillon, R. J., Piland, G. B. & Bardeen, C. J. Different rates of singlet fission in monoclinic versus orthorhombic crystal forms of diphenylhexatriene. J. Am. Chem. Soc. 135, 17278–17281 (2013).

    CAS  PubMed  Google Scholar 

  8. Mastron, J. N., Roberts, S. T., McAnally, R. E., Thompson, M. E. & Bradforth, S. E. Aqueous colloidal acene nanoparticles: a new platform for studying singlet fission. J. Phys. Chem. B 117, 15519–15526 (2013).

    CAS  PubMed  Google Scholar 

  9. Lee, J. et al. Singlet exciton fission in a hexacene derivative. Adv. Mater. 25, 1445–1448 (2013).

    CAS  PubMed  Google Scholar 

  10. Musser, A. J. et al. Activated singlet exciton fission in a semiconducting polymer. J. Am. Chem. Soc. 135, 12747–12754 (2013).

    CAS  PubMed  Google Scholar 

  11. Yost, S. R. et al. A transferable model for singlet-fission kinetics. Nature Chem. 6, 492–497 (2014).

    CAS  Google Scholar 

  12. Herz, J. et al. Acceleration of singlet fission in an aza-derivative of TIPS-pentacene. J. Phys. Chem. Lett. 5, 2425–2430 (2014).

    CAS  PubMed  Google Scholar 

  13. Busby, E. et al. Multiphonon relaxation slows singlet fission in crystalline hexacene. J. Am. Chem. Soc. 136, 10654–10660 (2014).

    CAS  PubMed  Google Scholar 

  14. Beljonne, D., Yamagata, H., Brédas, J. L., Spano, F. C. & Olivier, Y. Charge-transfer excitations steer the Davydov splitting and mediate singlet exciton fission in pentacene. Phys. Rev. Lett. 110, 226402 (2013).

    CAS  PubMed  Google Scholar 

  15. Johnson, J. C., Nozik, A. J. & Michl, J. The role of chromophore coupling in singlet fission. Acc. Chem. Res. 46, 1290–1299 (2013).

    CAS  PubMed  Google Scholar 

  16. Zimmerman, P. M., Musgrave, C. B. & Head-Gordon, M. A correlated electron view of singlet fission. Acc. Chem. Res. 46, 1339–1347 (2013).

    CAS  PubMed  Google Scholar 

  17. Wang, L., Olivier, Y., Prezhdo, O. V. & Beljonne, D. Maximizing singlet fission by intermolecular packing. J. Phys. Chem. Lett. 5, 3345–3353 (2014).

    CAS  PubMed  Google Scholar 

  18. Berkelbach, T. C., Hybertsen, M. S. & Reichman, D. R. Microscopic theory of singlet exciton fission. III. Crystalline pentacene. J. Chem. Phys. 141, 074705 (2014).

    PubMed  Google Scholar 

  19. Zimmerman, P. M., Zhang, Z. & Musgrave, C. B. Singlet fission in pentacene through multi-exciton quantum states. Nature Chem. 2, 648–652 (2010).

    CAS  Google Scholar 

  20. Zeng, T., Ananth, N. & Hoffmann, R. Seeking small molecules for singlet fission: a heteroatom substitution strategy. J. Am. Chem. Soc. 136, 12638–12647 (2014).

    CAS  PubMed  Google Scholar 

  21. Coto, P. B., Sharifzadeh, S., Neaton, J. B. & Thoss, M. Low-lying electronic excited states of pentacene oligomers: a comparative electronic structure study in the context of singlet fission. J. Chem. Theor. Comput. 11, 147–156 (2014).

    Google Scholar 

  22. Parker, S. M., Seideman, T., Ratner, M. A. & Shiozaki, T. Model Hamiltonian analysis of singlet fission from first principles. J. Phys. Chem. C 118, 12700–12705 (2014).

    CAS  Google Scholar 

  23. Merrifield, R. E., Avakian, P. & Groff, R. P. Fission of singlet excitons into pairs of triplet excitons in tetracene crystals. Chem. Phys. Lett. 3, 386–388 (1969).

    CAS  Google Scholar 

  24. Smith, M. B. & Michl, J. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64, 361–386 (2013).

    CAS  PubMed  Google Scholar 

  25. Chan, W.-L. et al. Observing the multiexciton state in singlet fission and ensuing ultrafast multielectron transfer. Science 334, 1541–1545 (2011).

    CAS  PubMed  Google Scholar 

  26. Chan, W.-L., Ligges, M. & Zhu, X. Y. The energy barrier in singlet fission can be overcome through coherent coupling and entropic gain. Nature Chem. 4, 840–845 (2012).

    CAS  Google Scholar 

  27. Alguire, E. C., Subotnik, J. E. & Damrauer, N. H. Exploring non-condon effects in a covalent tetracene dimer: how important are vibrations in determining the electronic coupling for singlet fission? J. Phys. Chem. A 119, 299–311 (2015).

    CAS  PubMed  Google Scholar 

  28. Renaud, N. & Grozema, F. C. Intermolecular vibrational modes speed up singlet fission in perylenediimide crystals. J. Phys. Chem. Lett. 6, 360–365 (2014).

    Google Scholar 

  29. Musser, A. J. et al. Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nature Phys. 11, 352–357 (2015).

    CAS  Google Scholar 

  30. Jonas, D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003).

    CAS  PubMed  Google Scholar 

  31. Egorova, D. Detection of electronic and vibrational coherences in molecular systems by 2D electronic photon echo spectroscopy. Chem. Phys. 347, 166–176 (2008).

    CAS  Google Scholar 

  32. Butkus, V., Zigmantas, D., Valkunas, L. & Abramavicius, D. Vibrational vs. electronic coherences in 2D spectrum of molecular systems. Chem. Phys. Lett. 545, 40–43 (2012).

    CAS  Google Scholar 

  33. Egorova, D. Self-analysis of coherent oscillations in time-resolved optical signals. J. Phys. Chem. A 118, 10259–10267 (2014).

    CAS  PubMed  Google Scholar 

  34. Brixner, T., Stenger, J., Vaswani, H. M., Blankenship, R. E. & Fleming, G. R. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 343, 625–628 (2005).

    Google Scholar 

  35. Ostroumov, E. E., Mulvaney, R. M., Cogdell, R. J. & Scholes, G. D. Broadband 2D electronic spectroscopy reveals a carotenoid dark state in purple bacteria. Science 340, 52–56 (2013).

    CAS  PubMed  Google Scholar 

  36. Halpin, A. et al. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nature Chem. 6, 196–201 (2014).

    CAS  Google Scholar 

  37. Tiwari, V., Peters, W. K. & Jonas, D. M. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. Proc. Natl Acad. Sci. USA 110, 1203–1208 (2013).

    CAS  PubMed  Google Scholar 

  38. Lazonder, K., Pshenichnikov, M. S. & Wiersma, D. A. Easy interpretation of optical two-dimensional correlation spectra. Opt. Lett. 31, 3354–3356 (2006).

    PubMed  Google Scholar 

  39. Panitchayangkoon, G. et al. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl Acad. Sci. USA 107, 12766–12770 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bayliss, S. L. et al. Geminate and nongeminate recombination of triplet excitons formed by singlet fission. Phys. Rev. Lett. 112, 238701 (2014).

    PubMed  Google Scholar 

  41. Wilson, M. W. B., Rao, A., Ehrler, B. & Friend, R. H. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices. Acc. Chem. Res. 46, 1330–1338 (2013).

    CAS  PubMed  Google Scholar 

  42. Rao, A. et al. Exciton fission and charge generation via triplet excitons in pentacene/C60 bilayers. J. Am. Chem. Soc. 132, 12698–12703 (2010).

    CAS  PubMed  Google Scholar 

  43. Egorova, D. Oscillations in two-dimensional photon-echo signals of excitonic and vibronic systems: stick-spectrum analysis and its computational verification. J. Chem. Phys. 140, 034314 (2014).

    PubMed  Google Scholar 

  44. De Boeij, W. P., Pshenichnikov, M. S. & Wiersma, D. A. System–bath correlation function probed by conventional and time-gated stimulated photon echo. J. Phys. Chem. 100, 11806–11823 (1996).

    CAS  Google Scholar 

  45. Song, Y., Hellmann, C., Stingelin, N. & Scholes, G. D. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film. J. Chem. Phys. 142, 212410 (2015).

    PubMed  Google Scholar 

  46. Schlau-Cohen, G. S. et al. Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nature Chem. 4, 389–395 (2012).

    CAS  Google Scholar 

  47. Egorova, D. & Domcke, W. Coherent vibrational dynamics during ultrafast photoinduced electron-transfer reactions: quantum dynamical simulations within multilevel Redfield theory. Chem. Phys. Lett. 384, 157–164 (2004).

    CAS  Google Scholar 

  48. Chan, W.-L., Tritsch, J. R. & Zhu, X. Y. Harvesting singlet fission for solar energy conversion: one- versus two-electron transfer from the quantum mechanical superposition. J. Am. Chem. Soc. 134, 18295–18302 (2012).

    CAS  PubMed  Google Scholar 

  49. Falke, S. M. et al. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 344, 1001–1005 (2014).

    CAS  PubMed  Google Scholar 

  50. Romero, E. et al. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nature Phys. 10, 676–682 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank T. Jansen and M. Pschenichnikov for discussions, D. Palecek for help with ~580 nm 2D experiments and M. Tabachnyk for help with preparing samples. This work was supported by Laserlab–Europe (project no. LLC001945). A.A.B. is currently a Royal Society University Research Fellow. He also acknowledges a Veni grant from the Netherlands Organization for Scientific Research (NWO). A.R., S.E.M. and A.W.C. acknowledge the Winton Programme for the Physics of Sustainability for support.

Author information

Authors and Affiliations

Authors

Contributions

A.A.B. and A.R. conceived the study. M.W.B.W. and A.R. produced and characterized the samples. A.A.B., D.Z. and A.R. planned and performed the 2D experiments. T.K. performed c.w. Raman experiments. A.A.B., S.E.M., A.W.C., D.E. and A.R. analysed the data. S.E.M., A.W.C. and D.E. developed the model and performed theoretical calculations. A.A.B., S.E.M., A.W.C., D.E. and A.R. wrote the paper, with input from all the authors.

Corresponding authors

Correspondence to Dassia Egorova or Akshay Rao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3379 kb)

Supplementary information

Supplementary Movie 1 (MP4 442 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakulin, A., Morgan, S., Kehoe, T. et al. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy. Nature Chem 8, 16–23 (2016). https://doi.org/10.1038/nchem.2371

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2371

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing