Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A labile hydride strategy for the synthesis of heavily nitridized BaTiO3

Abstract

Oxynitrides have been explored extensively in the past decade because of their interesting properties, such as visible-light absorption, photocatalytic activity and high dielectric permittivity. Their synthesis typically requires high-temperature NH3 treatment (800–1,300 °C) of precursors, such as oxides, but the highly reducing conditions and the low mobility of N3− species in the lattice place significant constraints on the composition and structure—and hence the properties—of the resulting oxynitrides. Here we show a topochemical route that enables the preparation of an oxynitride at low temperatures (<500 °C), using a perovskite oxyhydride as a host. The lability of H in BaTiO3−xHx (x ≤ 0.6) allows H/N3− exchange to occur, and yields a room-temperature ferroelectric BaTiO3−xN2x/3. This anion exchange is accompanied by a metal-to-insulator crossover via mixed O–H–N intermediates. These findings suggest that this ‘labile hydride’ strategy can be used to explore various oxynitrides, and perhaps other mixed anionic compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-step synthesis of oxynitride BaTiO3−xN2x/3.
Figure 2: Anion compositions, cell parameters and magnetism of the NH3-treated oxyhydrides.
Figure 3: Structural refinement for BaTiO2.4N0.4.
Figure 4: Systematic evolution of transport properties from oxyhydride SrTiO2.75H0.25 to oxyhydride–nitride SrTiO2.75HzNy (y + z < 0.25) to oxynitride SrTiO2.75Ny (y ≈ 0.16).
Figure 5: Ferroelectric properties of BaTiO2.4N0.4.

Similar content being viewed by others

References

  1. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001).

    Article  CAS  Google Scholar 

  2. Maeda, K. et al. Photocatalyst releasing hydrogen from water. Nature 440, 295 (2006).

    Article  CAS  Google Scholar 

  3. Jansen, M. & Letschert, H. P. Inorganic yellow–red pigments without toxic metals. Nature 404, 980–982 (2000).

    Article  CAS  Google Scholar 

  4. Kim, Y. I., Woodward, P. M., Baba-Kishi, K. Z. & Tai, C. W. Characterization of the structural, optical, and dielectric properties of oxynitride perovskites AMO2N (A = Ba, Sr, Ca; M = Ta, Nb). Chem. Mater. 16, 1267–1276 (2004).

    Article  CAS  Google Scholar 

  5. Kim, Y. I. et al. Epitaxial thin-film deposition and dielectric properties of the perovskite oxynitride BaTaO2N. Chem. Mater. 19, 618–623 (2007).

    Article  CAS  Google Scholar 

  6. Page, K. et al. Local atomic ordering in BaTaO2N studied by neutron pair distribution function analysis and density functional theory. Chem. Mater. 19, 4037–4042 (2007).

    Article  CAS  Google Scholar 

  7. Oka, D. et al. Possible ferroelectricity in perovskite oxynitride SrTaO2N epitaxial thin films. Sci. Rep. 4, 4987 (2014).

    Article  CAS  Google Scholar 

  8. Jorge, A. B. et al. Large coupled magnetoresponses in EuNbO2N. J. Am. Chem. Soc. 130, 12572–12573 (2008).

    Article  CAS  Google Scholar 

  9. Ebbinghaus, S. G. et al. Perovskite-related oxynitrides—recent developments in synthesis, characterisation and investigations of physical properties. Prog. Solid State Chem. 37, 173–205 (2009).

    Article  CAS  Google Scholar 

  10. Fuertes, A. Chemistry and applications of oxynitride perovskites. J. Mater. Chem. 22, 3293–3299 (2012).

    Article  CAS  Google Scholar 

  11. Gomathi, A., Reshma, S. & Rao, C. N. R. A simple urea-based route to ternary metal oxynitride nanoparticles. J. Solid. State Chem. 182, 72–76 (2009).

    Article  CAS  Google Scholar 

  12. Watanabe, T., Tajima, K., Li, J. W., Matsushita, N. & Yoshimura, M. Low-temperature ammonothermal synthesis of LaTaON2 . Chem. Lett. 40, 1101–1102 (2011).

    Article  CAS  Google Scholar 

  13. Clarke, S. J., Guinot, B. P., Michie, C. W., Calmont, M. J. C. & Rosseinsky, M. J. Oxynitride perovskites: synthesis and structure of LaZrO2N, NdTiO2N, and LaTiO2N and comparison with oxide perovskites. Chem. Mater. 14, 288–294 (2002).

    Article  CAS  Google Scholar 

  14. Tessier, F. & Marchand, R. Ternary and higher order rare-earth nitride materials: synthesis and characterization of ionic–covalent oxynitride powders. J. Solid State Chem. 171, 143–151 (2003).

    Article  CAS  Google Scholar 

  15. McAuley, A. & Hague, D. N. Inorganic Reaction Mechanisms (RSC Publishing, 1977).

    Book  Google Scholar 

  16. Kobayashi, Y. et al. An oxyhydride of BaTiO3 exhibiting hydride exchange and electronic conductivity. Nature Mater. 11, 507–511 (2012).

    Article  CAS  Google Scholar 

  17. Bräuniger, T., Müller, T., Pampel, A. & Abicht, H. Study of oxygen−nitrogen replacement in BaTiO3 by 14N solid-state nuclear magnetic resonance. Chem. Mater. 17, 4114–4117 (2005).

    Article  Google Scholar 

  18. David, A. et al. High-throughput synthesis and characterization of (BaxSr1−x)1+yTi1−yO3−δ and (BaxSr1−x)1+yTi1−yO3−zNz perovskite thin films. Cryst. Growth Des. 14, 523–532 (2014).

    Article  CAS  Google Scholar 

  19. Motohashi, T., Ito, M., Masubuchi, Y., Wakeshima, M. & Kikkawa, S. Crystal structure and superconducting properties of hexagonal lithium–niobium oxynitride. Inorg. Chem. 51, 11184–11189 (2012).

    Article  CAS  Google Scholar 

  20. Suzuki, A. et al. High-mobility electron conduction in oxynitride: anatase TaON. Chem. Mater. 26, 976–981 (2013).

    Article  Google Scholar 

  21. Yajima, T. et al. Epitaxial thin films of ATiO3–xHx (A= Ba, Sr, Ca) with metallic conductivity. J. Am. Chem. Soc. 134, 8782–8785 (2012).

    Article  CAS  Google Scholar 

  22. Yang, M. et al. Anion order in perovskite oxynitrides. Nature Chem. 3, 47–52 (2011).

    Article  CAS  Google Scholar 

  23. Yashima, M. et al. Size effect on the crystal structure of barium titanate nanoparticles. J. Appl. Phys. 98, 014313 (2005).

    Article  Google Scholar 

  24. Lei, S. et al. Reply to “Comment on ‘Origin of piezoelectric response under a biased scanning probe microscopy tip across a 180° ferroelectric domain wall’”. Phys. Rev. B 89, 226102 (2014).

    Article  Google Scholar 

  25. Sakaguchi, T. et al. Oxyhydrides of (Ca,Sr,Ba)TiO3 perovskite solid solutions. Inorg. Chem. 51, 11371–11376 (2012).

    Article  CAS  Google Scholar 

  26. Hayward, M. A. et al. The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7 . Science 295, 1882–1884 (2002).

    Article  CAS  Google Scholar 

  27. Romero, F. D. et al. Strontium vanadium oxide–hydrides: ‘square-planar’ two-electron phases. Angew. Chem. Int. Ed. 53, 7556–7559 (2014).

    Article  Google Scholar 

  28. Bang, J. et al. Hydrogen ordering and new polymorph of layered perovskite oxyhydrides: Sr2VO4−xHx . J. Am. Chem. Soc. 136, 7221–7224 (2014).

    Article  CAS  Google Scholar 

  29. Tassel, C. et al. Direct synthesis of chromium perovskite oxyhydride with a high magnetic transition temperature. Angew. Chem. Int. Ed. 126, 10545–10548 (2014).

    Article  Google Scholar 

  30. Iimura, S. et al. Two-dome structure in electron-doped iron arsenide superconductors. Nature Commun. 3, 943 (2012).

    Article  Google Scholar 

  31. Izumi, F. & Momma, K. Three-dimensional visualization in powder diffraction. Solid State Phenom. 130, 15–20 (2007).

    Article  CAS  Google Scholar 

  32. Jungk, T., Hoffmann, A. & Soergel, E. Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy. Appl. Phys. Lett. 89, 163507 (2006).

    Article  Google Scholar 

  33. Lei, S. et al. Origin of piezoelectric response under a biased scanning probe microscopy tip across a 180° ferroelectric domain wall. Phys. Rev. B 86, 134115 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by FIRST and CREST programmes of the Japan Science and Technology Agency. H.A., S.L. and V.G. acknowledge support from the National Science Foundation grant numbers DMR-1420620 and DMR-1210588. H.A. acknowledges support from Japan Society for the Promotion of Science for Research Abroad (No. 25-185). The synchrotron radiation experiments were performed at the BL02B2 of SPring-8 with the approval of the JASRI.

Author information

Authors and Affiliations

Authors

Contributions

T. Yajima and F.T. contributed equally. T. Yajima, F.T. and H.K. conceived and designed the study. F.T., K.A., M.O., W.Y. and T. Yajima performed the synthesis, laboratory PXRD, synchrotron PXRD, XPS and elemental analysis. T.Yam., C.M.B., M.A.G. and H.K. obtained the neutron data. The structural refinement was performed by K.A., T. Yamamoto and T. Yajima. W.Y. and T. Yajima fabricated the thin films. H.A., K.F., S.L., V.G. and K.T. conducted the SHG and PFM measurements and FEM simulations. All authors discussed the results. F.T. and H.K. wrote the manuscript, with contributions and feedback from all the authors, mainly T. Yajima, Y.K., H.A. and K.F.

Corresponding author

Correspondence to Hiroshi Kageyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yajima, T., Takeiri, F., Aidzu, K. et al. A labile hydride strategy for the synthesis of heavily nitridized BaTiO3. Nature Chem 7, 1017–1023 (2015). https://doi.org/10.1038/nchem.2370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2370

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing