Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A steric tethering approach enables palladium-catalysed C–H activation of primary amino alcohols

Abstract

Aliphatic primary amines are a class of chemical feedstock essential to the synthesis of higher-order nitrogen-containing molecules, commonly found in biologically active compounds and pharmaceutical agents. New methods for the construction of complex amines remain a continuous challenge to synthetic chemists. Here, we outline a general palladium-catalysed strategy for the functionalization of aliphatic C–H bonds within amino alcohols, an important class of small molecule. Central to this strategy is the temporary conversion of catalytically incompatible primary amino alcohols into hindered secondary amines that are capable of undergoing a sterically promoted palladium-catalysed C–H activation. Furthermore, a hydrogen bond between amine and catalyst intensifies interactions around the palladium and orients the aliphatic amine substituents in an ideal geometry for C–H activation. This catalytic method directly transforms simple, easily accessible amines into highly substituted, functionally concentrated and structurally diverse products, and can streamline the synthesis of biologically important amine-containing molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: C–H activation on aliphatic amines.
Figure 2: Conceptual approach and preliminary studies towards C–H activation of amino alcohols.
Figure 3: Synthetic applications of functionalized amino alcohol derivatives.

Similar content being viewed by others

References

  1. Jia, C., Kitamura, T. & Fujiwara, Y. Catalytic functionalization of arenes and alkanes via C−H bond activation. Acc. Chem. Res. 34, 633–639 (2001).

    Article  CAS  Google Scholar 

  2. Godula, K. & Sames, D. C–H bond functionalization in complex organic synthesis. Science 312, 67–72 (2006).

    Article  CAS  Google Scholar 

  3. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    Article  CAS  Google Scholar 

  4. Davies, H. M. L., Du Bois, J. & Yu, J.-Q. C–H functionalization in organic synthesis. Chem. Soc. Rev. 40, 1855–1856 (2011).

    Article  CAS  Google Scholar 

  5. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

    Article  CAS  Google Scholar 

  6. Mkhalid, I. A. I., Barnard, J. H., Marder, T. B., Murphy, J. M. & Hartwig, J. F. C–H activation for the construction of C–B bonds. Chem. Rev. 110, 890–931 (2010).

    Article  CAS  Google Scholar 

  7. Wencel-Delord, J., Dröge, T., Liu, F. & Glorius, F. Towards mild metal-catalyzed C–H bond activation. Chem. Soc. Rev. 40, 4740–4761 (2011).

    Article  CAS  Google Scholar 

  8. Jazzar, R., Hitce, J., Renaudat, A., Sofack-Kreutzer, J. & Baudoin, O. Functionalization of organic molecules by transition-metal-catalyzed C(sp3)–H activation chemistry. Chem. Eur. J. 16, 2654–2672 (2010).

    Article  CAS  Google Scholar 

  9. Daugulis, O., Do, H.-Q. & Shabashov, D. Palladium- and copper-catalyzed arylation of carbon–hydrogen bonds. Acc. Chem. Res. 42, 1074–1086 (2009).

    Article  CAS  Google Scholar 

  10. Engle, K. M., Wu, H.-C. & Yu, J.-Q. Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions. Acc. Chem. Res. 45, 788–802 (2012).

    Article  CAS  Google Scholar 

  11. Wang, D.-H., Engle, K. M., Shi, B.-F. & Yu, J.-Q. Ligand-enabled reactivity and selectivity in a synthetically versatile aryl C–H olefination. Science 327, 315–319 (2010).

    Article  CAS  Google Scholar 

  12. Wasa, M., Engle, K. M. & Yu, J.-Q. Pd(0)/PR3-catalyzed intermolecular arylation of sp3 C–H bonds. J. Am. Chem. Soc. 131, 9886–9887 (2009).

    Article  CAS  Google Scholar 

  13. Simmons, E. M. & Hartwig, J. F. Catalytic functionalization of unactivated primary C–H bonds directed by an alcohol. Nature 483, 70–73 (2012).

    Article  CAS  Google Scholar 

  14. Zaitsev, V. G., Shabashov, D. & Daugulis, O. Highly regioselective arylation of sp3 C–H bonds catalyzed by palladium acetate. J. Am. Chem. Soc. 127, 13154–13155 (2005).

    Article  CAS  Google Scholar 

  15. Desai, L. V., Hull, K. L. & Sanford, M. S. Palladium-catalyzed oxygenation of unactivated sp3 hybridized C–H bonds. J. Am. Chem. Soc. 126, 9542–9543 (2004).

    Article  CAS  Google Scholar 

  16. Dupont, J., Consorti, C. C. & Spencer, J. The potential of palladacycles: more than just precatalysts. Chem. Rev. 105, 2527–2572 (2005).

    Article  CAS  Google Scholar 

  17. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    Article  CAS  Google Scholar 

  18. Ackermann, L. Carboxylate-assisted transition-metal-catalyzed C–H bond functionalizations: mechanism and scope. Chem. Rev. 111, 1315–1345 (2011).

    Article  CAS  Google Scholar 

  19. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C–C bond formation via heteroatom directed C–H bond activation. Chem. Rev. 110, 624–655 (2010).

    Article  CAS  Google Scholar 

  20. Ryabov, A. D. Mechanisms of intramolecular activation of carbon–hydrogen bonds in transition-metal complexes. Chem. Rev. 90, 403–424 (1990).

    Article  CAS  Google Scholar 

  21. He, G., Zhao, Y., Zhang, S., Lu, C. & Chen, G. Highly efficient syntheses of azetidines, pyrrolidines, and indolines via palladium-catalyzed intramolecular amination of C(sp3)–H and C(sp2)–H bonds at the γ and δ positions. J. Am. Chem. Soc. 134, 3–6 (2012).

    Article  CAS  Google Scholar 

  22. Zhang, S.-Y. et al. Palladium-catalyzed picolinamide-directed alkylation of unactivated C(sp3)–H bonds with alkyl iodides. J. Am. Chem. Soc. 135, 2124–2127 (2013).

    Article  CAS  Google Scholar 

  23. Chan, K. S. L. et al. Ligand-enabled cross-coupling of C(sp3)-H bonds with arylboron reagents via Pd(II)/Pd(0) catalysis. Nature Chem. 6, 146–150 (2014).

    Article  CAS  Google Scholar 

  24. Yuan, J., Liu, C. & Lei, A. Construction of N-containing heterocycles via oxidative intramolecular N–H/X–H coupling. Chem. Commun. 51, 1394–1409 (2015).

    Article  CAS  Google Scholar 

  25. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  Google Scholar 

  26. Cho, J.-Y., Tse, M. K., Holmes, D., Maleczka, R. E. Jr. & Smith, M. R. III. Remarkably selective iridium catalysts for the elaboration of aromatic C–H bonds. Science 295, 305–308 (2002).

    Article  CAS  Google Scholar 

  27. Ishiyama, T. et al. Mild iridium-catalyzed borylation of arenes. High turnover numbers, room temperature reactions, and isolation of a potential intermediate. J. Am. Chem. Soc. 124, 390–391 (2002).

    Article  CAS  Google Scholar 

  28. Ferreira, E. M. & Stoltz, B. M. Catalytic C−H bond functionalization with palladium(II): aerobic oxidative annulations of indoles. J. Am. Chem. Soc. 125, 9578–9579 (2003).

    Article  CAS  Google Scholar 

  29. Zhang, Y.-H., Shi, B.-F. & Yu, J.-Q. Pd(II)-catalyzed olefination of electron-deficient arenes using 2,6-dialkylpyridine ligands. J. Am. Chem. Soc. 131, 5072–5074 (2009).

    Article  CAS  Google Scholar 

  30. Emmert, M. H., Cook, A. K., Xie, Y. J. & Sanford, M. S. Remarkably high reactivity of Pd(OAc)2/pyridine catalysts: nondirected C−H oxygenation of arenes. Angew. Chem. Int. Ed. 50, 9409–9412 (2011).

    Article  CAS  Google Scholar 

  31. Giri, R., Lan, Y., Peng, L., Houk, K. N. & Yu, J.-Q. Understanding reactivity and stereoselectivity in palladium-catalyzed diastereoselective sp3 C−H bond activation: intermediate characterization and computational studies. J. Am. Chem. Soc. 134, 14118–14126 (2012).

    Article  CAS  Google Scholar 

  32. McNally, A., Haffemayer, B., Collins, B. S. L. & Gaunt, M. J. Palladium-catalysed C–H activation of aliphatic amines to give strained nitrogen heterocycles. Nature 510, 129–133 (2014).

    Article  CAS  Google Scholar 

  33. Bera, K. & Namboothiri, I. N. N. Asymmetric synthesis of quaternary α-amino acids and their phosphonate analogues. Asian J. Org. Chem. 3, 1234–1260 (2014).

    Article  CAS  Google Scholar 

  34. Reichard, G. A. & Corey, E. J. Total synthesis of lactacystin. J. Am. Chem. Soc. 114, 10677–10678 (1992).

    Article  Google Scholar 

  35. Strader, C. R., Pearce, C. J. & Oberlies, N. H. Fingolimod (FTY720): a recently approved multiple sclerosis drug based on a fungal secondary metabolite. J. Nat. Prod. 74, 900–907 (2011).

    Article  CAS  Google Scholar 

  36. Gorelsky, S., Lapointe, D. & Fagnou, K. Analysis of the concerted metalation–deprotonation mechanism in palladium-catalyzed direct arylation across a broad range of aromatic substrates. J. Am. Chem. Soc. 130, 10848–10849 (2008).

    Article  CAS  Google Scholar 

  37. Garcia-Cuadrado, D., Braga, A. A. C., Maseras, F. & Echavarren, A. M. Proton abstraction mechanism for the palladium-catalyzed intramolecular arylation. J. Am. Chem. Soc. 128, 1066–1067 (2006).

    Article  CAS  Google Scholar 

  38. Giri, R., Chen, X. & Yu, J.-Q. Palladium-catalyzed asymmetric iodination of unactivated C–H bonds under mild conditions. Angew. Chem. Int. Ed. 44, 2112–2115 (2005).

    Article  CAS  Google Scholar 

  39. Hickman, A. J. & Sanford, M. S. High-valent organometallic copper and palladium in catalysis. Nature 484, 177–185 (2012).

    Article  CAS  Google Scholar 

  40. Darabantu, M. et al. Synthesis and stereochemistry of some 1,3-oxazolidine systems based on TRIS (α,α,α-trimethylolaminomethane) and related aminopolyols—skeleton (II): 1-aza-3,7-dioxabicyclo[3.3.0]octanes. Tetrahedron 56, 3799–3816 (2000).

    Article  CAS  Google Scholar 

  41. Deprez, N. R., Kalyani, D., Krause, A. & Sanford, M. S. Room temperature palladium-catalyzed 2-arylation of indoles. J. Am. Chem. Soc. 128, 4972–4973 (2006).

    Article  CAS  Google Scholar 

  42. Donohoe, T. J., Bataille, C. J. R. & Churchill, G. W. Highlights of natural product synthesis. Annu. Rep. Prog. Chem. B 102, 98–122 (2006).

    Article  CAS  Google Scholar 

  43. Kozitsyna, N. Y. et al. Novel heterometallic palladium–silver complex. Inorg. Chim. Acta 370, 382–387 (2011).

    Article  CAS  Google Scholar 

  44. Li, S., Chen, G., Feng, C.-G., Gong, W. & Yu, J.-Q. Ligand-enabled γ-C–H olefination and carbonylation: construction of β-quaternary carbon centers. J. Am. Chem. Soc. 136, 5267–5270 (2014).

    Article  CAS  Google Scholar 

  45. Wasa, M., Engle, K. M., & Yu, J.-Q. Pd(II)-catalyzed olefination of sp3 C−H bonds. J. Am. Chem. Soc. 132, 3680–3681 (2010).

    Article  CAS  Google Scholar 

  46. Stowers, K. J., Fortner, K. C. & Sanford, M. S. Aerobic Pd-catalyzed sp3 C−H olefination: a route to both N-heterocyclic scaffolds and alkenes. J. Am. Chem. Soc. 133, 6541–6544 (2011).

    Article  CAS  Google Scholar 

  47. Kunkel, G. T., Maceyka, M., Milstien, S. & Spiegel, S. Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nature Rev. Drug Discov. 12, 688–702 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Marie Curie Foundation (D.P. and J.C.), the Engineering and Physical Sciences Research Council (EPSRC) (T.W.G. and M.J.G.) and European Research Council (V.D. and M.J.G.). The authors thank A. Smalley for density functional theory calculations and Y. Shimidzu for assistance with optimization of the C–H acetoxylation reaction. Mass spectrometry data were acquired at the EPSRC UK National Mass Spectrometry Facility at Swansea University.

Author information

Authors and Affiliations

Authors

Contributions

J.C., T.W.G., D.P., V.D. and B.H. discovered and developed the reactions. M.J.G. conceived, designed and directed the investigations and wrote the manuscript.

Corresponding author

Correspondence to Matthew J. Gaunt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 24669 kb)

Supplementary information

Crystallographic data for compound int-IV-1a (CIF 374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calleja, J., Pla, D., Gorman, T. et al. A steric tethering approach enables palladium-catalysed C–H activation of primary amino alcohols. Nature Chem 7, 1009–1016 (2015). https://doi.org/10.1038/nchem.2367

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2367

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing