Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Iron sensitizer converts light to electrons with 92% yield

Abstract

Solar energy conversion in photovoltaics or photocatalysis involves light harvesting, or sensitization, of a semiconductor or catalyst as a first step. Rare elements are frequently used for this purpose, but they are obviously not ideal for large-scale implementation. Great efforts have been made to replace the widely used ruthenium with more abundant analogues like iron, but without much success due to the very short-lived excited states of the resulting iron complexes. Here, we describe the development of an iron–nitrogen–heterocyclic-carbene sensitizer with an excited-state lifetime that is nearly a thousand-fold longer than that of traditional iron polypyridyl complexes. By the use of electron paramagnetic resonance, transient absorption spectroscopy, transient terahertz spectroscopy and quantum chemical calculations, we show that the iron complex generates photoelectrons in the conduction band of titanium dioxide with a quantum yield of 92% from the 3MLCT (metal-to-ligand charge transfer) state. These results open up possibilities to develop solar energy-converting materials based on abundant elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical structures of the investigated complexes.
Figure 2: Steady-state UV–vis absorption spectra of the investigated compounds.
Figure 3: Energy-level alignment using quantum chemical calculations to assess electron transfer from the dyes to TiO2.
Figure 4: Difference EPR spectra for 2.
Figure 5: Transient absorption spectra of compound 2.
Figure 6: Photoconductivity spectra and photoconductivity kinetics calculated from transient terahertz spectroscopy data for 2 on TiO2.
Figure 7: Jablonski diagram of the electronic states involved in photo-induced electron transfer between 2 and TiO2, including time constants and quantum yields (in %).

Similar content being viewed by others

References

  1. Hagfeldt, A. & Grätzel, M. Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49–68 (1995).

    Article  CAS  Google Scholar 

  2. Anderson, N. A. & Lian, T. Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface. Annu. Rev. Phys. Chem. 56, 491–519 (2005).

    Article  CAS  Google Scholar 

  3. Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. & Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 110h, 6595–6663 (2010).

    Article  Google Scholar 

  4. Youngblood, W. J., Lee, S. A., Maeda, K. & Mallouk, T. E. Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res. 42, 1966–1973 (2009).

    Article  CAS  Google Scholar 

  5. Sun, L., Li, F. & Yu, Z. Recent advances in dye-sensitized photoelectrochemical cells for solar hydrogen production based on molecular components. Energy Environ. Sci. 8, 760–775 (2015).

    Article  Google Scholar 

  6. Park, H., Park, Y., Kim, W. & Choi, W. Surface modification of TiO2 photocatalyst for environmental applications. J. Photochem. Rev. 15, 1–20 (2013).

    Article  CAS  Google Scholar 

  7. Li, L. & Diau, E. W. Porphyrin-sensitized solar cells. Chem. Soc. Rev. 42, 291–304 (2013).

    Article  CAS  Google Scholar 

  8. Grätzel, M. The light and shade of perovskite solar cells. Nature Mater. 13, 838–842 (2014).

    Article  Google Scholar 

  9. Campagna, S., Puntoriero, F., Nastasi, F., Bergamini, G. & Balzani, V. Photochemistry and photophysics of coordination compounds. An extended view. Coord. Chem. Rev. 280, 117–214 (2007).

    CAS  Google Scholar 

  10. Creutz, C., Chou, M., Netzel, T. L., Okumura, M. & Sutin, N. Lifetimes, spectra, and quenching of the excited states of polypyridine complexes of iron(II), ruthenium(II), and osmium(II). J. Am. Chem. Soc. 102, 1309–1319 (1980).

    Article  CAS  Google Scholar 

  11. McCusker, J. K. et al. Subpicosecond 1MLCT 5T2 intersystem crossing of low-spin polypyridyl ferrous complexes. J. Am. Chem. Soc. 115, 298–307 (1993).

    Article  CAS  Google Scholar 

  12. McCusker, J. K., Rheingold, A. L. & Hendrickson, D. N. Variable-temperature studies of laser-initiated 5T2–1A1 intersystem crossing in spin-crossover complexes: empirical correlations between activation parameters and ligand structure in a series of polypyridyl ferrous complexes. Inorg. Chem. 35, 2100–2112 (1996).

    Article  CAS  Google Scholar 

  13. Monat, J. E. & McCusker, J. K. Femtosecond excited-state dynamics of an iron(II) polypyridyl solar cell sensitizer model. J. Am. Chem. Soc. 122, 4092–4097 (2000).

    Article  CAS  Google Scholar 

  14. Juban, E. A., Smeigh, A. L., Monat, J. E. & McCusker, J. K. Ultrafast dynamics of ligand-field excited states. Coord. Chem. Rev. 250, 1783–1791 (2006).

    Article  CAS  Google Scholar 

  15. Smeigh, A. L., Creelman, M., Mathies, R. A. & McCusker, J. K. Femtosecond time-resolved optical and Raman spectroscopy of photoinduced spin crossover: temporal resolution of low- to-high spin optical switching. J. Am. Chem. Soc. 130, 14105–14107 (2008).

    Article  CAS  Google Scholar 

  16. Cannizzo, A. et al. Light-induced spin crossover in Fe(II)-based complexes. The full photocycle unraveled by ultrafast optical and X-ray spectroscopies. Coord. Chem. Rev. 254, 2677–2686 (2010).

    Article  CAS  Google Scholar 

  17. Jamula, L. L., Brown, A. M., Guo, D. & McCusker, J. K. Synthesis and characterization of a high-symmetry ferrous polypyridyl complex: approaching the 5T2/3T11 crossing point for Fe. Inorg. Chem. 53, 15–17 (2014).

    Article  CAS  Google Scholar 

  18. Zhang, W. et al. Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature 509, 345–348 (2014).

    Article  CAS  Google Scholar 

  19. Schnadt, J. et al. Experimental evidence for sub-3-fs charge transfer from an aromatic adsorbate to a semiconductor. Nature 418, 620–623 (2002).

    Article  CAS  Google Scholar 

  20. Persson, P., Lundqvist, M. J., Ernstorfer, R., Goddard, W. A. & Willig, F. Quantum chemical calculations of the influence of anchor-cum-spacer groups on femtosecond electron transfer times in dye-sensitized semiconductor nanocrystals. J. Chem. Theory Comput. 2, 441–451 (2006).

    Article  CAS  Google Scholar 

  21. Benkö, G., Kallioinen, J., Korppi-Tommola, J. E. I., Yartsev, A. P. & Sundström, V. Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. J. Am. Chem. Soc. 124, 489–493 (2002).

    Article  Google Scholar 

  22. Ferrere, S. & Gregg, B. A. Photosensitization of TiO2 by band selective electron injection from ultra-short-lived excited states. J. Am. Chem. Soc. 120, 843–844 (1998).

    Article  CAS  Google Scholar 

  23. Ferrere, S. New photosensitizers based upon [Fe(L)2(CN)2] and [Fe(L)3] (L= substituted 2,2-bipyridine): yields for the photosensitization of TiO2 and effects on the band selectivity. Chem. Mater. 12, 1083–1089 (2000).

    Article  CAS  Google Scholar 

  24. Ferrere, S. New photosensitizers based upon [FeII(L)2(CN)2] and [FeIIL3], where L is substituted 2,2′-bipyridine. Inorg. Chim. Acta 329, 79–92 (2002).

    Article  CAS  Google Scholar 

  25. Yang, M., Thompson, D. W. & Meyer, G. J. Dual pathways for TiO2 sensitization by Na2[Fe(bpy)(CN)4]. Inorg. Chem. 39, 3738–3739 (2000).

    Article  CAS  Google Scholar 

  26. Yang, M., Thompson, D. W. & Meyer, G. J. Charge-transfer studies of iron cyano compounds bound to nanocrystalline TiO2 surfaces. Inorg. Chem. 41, 1254–1262 (2002).

    Article  CAS  Google Scholar 

  27. Bowman, D. N., Blew, J. H., Tsuchiya, T. & Jakubikova, E. Elucidating band-selective sensitization in iron(II) polypyridine–TiO2 assemblies. Inorg. Chem. 52, 8621–8628 (2013).

    Article  CAS  Google Scholar 

  28. Bowman, D. N., Mukherjee, S., Barnes, L. J. & Jakubikova, E. Linker dependence of interfacial electron transfer rates in Fe(II)–polypyridine sensitized solar cells. J. Phys. Condens. Matter 27, 134205 (2015).

    Article  Google Scholar 

  29. Dixon, I. M., Alary, F., Boggio-Pasqua, M. & Heully, J.-L. The (N4C2)2– donor set as promising motif for bis(tridentate) iron(II) photoactive compounds. Inorg. Chem. 52, 13369–13374 (2013).

    Article  CAS  Google Scholar 

  30. Mukherjee, S., Bowman, D. N. & Jakubikova, E. Cyclometalated Fe(II) complexes as sensitizers in dye-sensitized solar cells. Inorg. Chem. 54, 560–569 (2015).

    Article  CAS  Google Scholar 

  31. Duchanois, T. et al. Heteroleptic pyridyl–carbene iron complexes with tuneable electronic properties. Eur. J. Inorg. Chem. 2014, 3747–3753 (2014).

    Article  CAS  Google Scholar 

  32. Liu, Y. et al. Towards longer-lived metal-to-ligand charge transfer states of iron(II) complexes an N-heterocyclic carbene approach. Chem. Commun. 49, 6412–6414 (2013).

    Article  CAS  Google Scholar 

  33. Fredin, L. A. et al. Exceptional excited-state lifetime of an iron(II) N-heterocyclic carbene complex explained. J. Phys. Chem. Lett. 5, 2066–2071 (2014).

    Article  CAS  Google Scholar 

  34. Liu, Y. et al. A heteroleptic ferrous complex with mesoionic bis(1,2,3-triazol-5-ylidene) ligands taming the MLCT excited state of iron(II). Chem. Eur. J. 21, 3628–3639 (2015).

    Article  CAS  Google Scholar 

  35. Duchanois, T. et al. An iron-based photosensitizer with extended excited-state lifetime photophysical and photovoltaic properties. Eur. J. Inorg. Chem. 2015, 2469–2477 (2015).

    Article  CAS  Google Scholar 

  36. Huynh, H. V. & Frison, G. Electronic structural trends in divalent carbon compounds. J. Org. Chem. 78, 328–338 (2013).

    Article  CAS  Google Scholar 

  37. Galynska, M. & Persson, P. Emerging polymorphism in nanostructured TiO2: quantum chemical comparison of anatase, rutile, and brookite clusters. Int. J. Quantum Chem. 113, 2611–2620 (2013).

    Article  CAS  Google Scholar 

  38. de Angelis, F., Valentin, C. D., Fantacci, S., Vittadini, A. & Selloni, A. Theoretical studies on anatase and less common TiO2 phases: bulk, surfaces, and nanomaterials. Chem. Rev. 114, 9708–9753 (2014).

    Article  CAS  Google Scholar 

  39. Huang, J. et al. Highly efficient ultrafast electron injection from the singlet MLCT excited state of copper(I) diimine complexes to TiO2 nanoparticles. Angew. Chem. Int. Ed. 51, 12711–12715 (2012).

    Article  CAS  Google Scholar 

  40. Abragam, A. & Bleaney, B. in Electron Paramagnetic Resonance of Transition Ions (Oxford Univ. Press, 1970).

  41. Pilbrow, J. R. Transition Ion Electron Paramagnetic Resonance (Clarendon, 1990).

    Google Scholar 

  42. Xiong, L.-B., Li, J.-L., Yang, B. & Yu, Y. Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. J. Nanomater. 2012, 831524 (2012).

    Article  Google Scholar 

  43. Němec, H. et al. Influence of the electron–cation interaction on electron mobility in dye-sensitized ZnO and TiO2 nanocrystals. A study using ultrafast terahertz spectroscopy. Phys. Rev. Lett. 104, 197401 (2010).

    Article  Google Scholar 

  44. Němec, H., Kužel, P. & Sundström, V. Charge transport in nanostructured materials for solar energy conversion studied by time-resolved terahertz spectroscopy. J. Photochem. Photobiol. A 215, 123–139 (2010).

    Article  Google Scholar 

  45. Katoh, R. & Furube, A. Electron injection efficiency in dye-sensitized solar cells. J. Photochem. Photobiol. C 20, 1–16 (2014).

    Article  CAS  Google Scholar 

  46. Ponseca, C. S. et al. Ultrafast terahertz photoconductivity of bulk heterojunction materials reveals high carrier mobility up to nanosecond time scale. J. Am. Chem. Soc. 134, 11836–11839 (2012).

    Article  CAS  Google Scholar 

  47. Hara, K. et al. Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Sol. Energ. Mater. Sol. Cells 64, 115–134 (2000).

    Article  CAS  Google Scholar 

  48. Frisch, M. J. et al. Gaussian09 Revision D.01 (Gaussian, 2009).

  49. Perdew, J. P., Ernzerhof, M. & Burke, K. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78, 1396 (1997).

    Article  CAS  Google Scholar 

  50. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank E. Thyrhaug for help with steady-state absorption measurements, H. Němec for providing the THz photoconductivity kinetics of RuN3 on TiO2 and E. Unger for valuable discussions. This work was supported by the Crafoord Foundation, the Swedish Research Council (VR), the Knut and Alice Wallenberg (KAW) Foundation and the Swedish Energy Agency. P.P. acknowledges support from the Swedish National Supercomputing Centre and the Lund University Intensive Computation Application Research Center supercomputing facilities. The European Research Council is acknowledged for an Advanced Investigator Grant to V.S. (226136-VISCHEM).

Author information

Authors and Affiliations

Authors

Contributions

T.H., Y.L., P.C., K.K., V.S. and K.W. conceived and designed the experiments. Y.L. and O.G. performed the synthesis. Samples were prepared by Y.L., O.G., H.M. and P.C. R.L. carried out the electrochemical measurements. R.W. performed the electron microscopy and energy-dispersive X-ray spectroscopy. L.F. made the quantum chemical calculations and the data were analysed by L.F. and P.P. Y.L. and P.H. performed the electron paramagnetic resonance experiments and the data were analysed by P.H. and S.S. T.H., Y.L., P.C., K.K. and H.M. carried out the transient absorption spectroscopy experiments and the data were analysed by T.H. C.P. conducted the transient terahertz experiments and T.H. analysed the data. T.H., Y.L., V.S. and K.W. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Kenneth Wärnmark.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harlang, T., Liu, Y., Gordivska, O. et al. Iron sensitizer converts light to electrons with 92% yield. Nature Chem 7, 883–889 (2015). https://doi.org/10.1038/nchem.2365

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2365

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing