Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unidirectional rotary motion in achiral molecular motors

Abstract

Control of the direction of motion is an essential feature of biological rotary motors and results from the intrinsic chirality of the amino acids from which the motors are made. In synthetic autonomous light-driven rotary motors, point chirality is transferred to helical chirality, and this governs their unidirectional rotation. However, achieving directional rotary motion in an achiral molecular system in an autonomous fashion remains a fundamental challenge. Here, we report an achiral molecular motor in which the presence of a pseudo-asymmetric carbon atom proved to be sufficient for exclusive autonomous disrotary motion of two appended rotor moieties. Isomerization around the two double bonds enables both rotors to move in the same direction with respect to their surroundings—like wheels on an axle—demonstrating that autonomous unidirectional rotary motion can be achieved in a symmetric system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Directional rotary motion in symmetric systems.
Figure 2: Calculated thermal behaviour of 4.
Figure 3: Rotational behaviour of 4.
Figure 4: Photochemical and thermal isomerization processes of 4.
Figure 5: Isolation and identification of isomers of 5.
Figure 6: Unidirectional rotation of (R,(Z,M),(E,P))-5 followed by SFC and 1H NMR.

Similar content being viewed by others

References

  1. Schliwa, M. (ed.) Molecular Motors (VCH-Wiley, 2006).

    Google Scholar 

  2. Stoddart, J. F. The chemistry of the mechanical bond. Chem. Soc. Rev. 38, 1802–1820 (2009).

    Article  Google Scholar 

  3. Browne, W. R. & Feringa, B. L. Making molecular machines work. Nature Nanotech. 1, 25–35 (2006).

    Article  Google Scholar 

  4. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  Google Scholar 

  5. Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

    Article  Google Scholar 

  6. Khuong, T.-A. V., Nuñez, J. E., Godinez, C. E. & Garcia-Garibay, M. A. Crystalline molecular machines: a quest toward solid-state dynamics and function. Acc. Chem. Res. 39, 413–422 (2006).

    Article  Google Scholar 

  7. Kottas, G. S., Clarke, L. I., Horinek, D. & Michl, J. Artificial molecular rotors. Chem. Rev. 105, 1281–1376 (2005).

    Article  Google Scholar 

  8. Astumian, R. D. Stochastic conformational pumping: stochastic conformational pumping: a mechanism for free-energy transduction by molecules. Annu. Rev. Biophys. 40, 289–313 (2011).

    Article  Google Scholar 

  9. Cha, T.-G. et al. A synthetic DNA motor that transports nanoparticles along carbon nanotubes. Nature Nanotech. 9, 39–43 (2014).

    Article  Google Scholar 

  10. Greb, L. & Lehn, J.-M. Light-driven molecular motors: imines as four-step or two-step unidirectional rotors. J. Am. Chem. Soc. 136, 13114–13117 (2014).

    Article  Google Scholar 

  11. Gu, H., Chao, J., Xiao, S.-J. & Seeman, N. C. A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–205 (2010).

    Article  Google Scholar 

  12. Kudernac, T. et al. Electrically driven directional motion of a four-wheeled molecule on a metal surface. Nature 479, 208–211 (2011).

    Article  Google Scholar 

  13. Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nature Nanotech. 10, 161–165 (2015).

    Article  Google Scholar 

  14. Pijper, D. & Feringa, B. L. Molecular transmission: controlling the twist sense of a helical polymer with a single light-driven molecular motor. Angew. Chem. Int. Ed. 119, 3767–3770 (2007).

    Article  Google Scholar 

  15. Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    Article  Google Scholar 

  16. Sauvage, J.-P. (ed.) Molecular Machines and Motors. Structure and Bonding 99 (Springer, 2001).

    Book  Google Scholar 

  17. Balzani, V., Credi, A. & Venturi, M. Molecular Devices and Machines—Concepts and Perspectives for the Nanoworld (VCH-Wiley, 2008).

    Book  Google Scholar 

  18. Bissell, R. A., Cordova, E., Kaifer, A. E. & Stoddart, J. F. A chemically and electrochemically switchable molecular shuttle. Nature 369, 133–137 (1994).

    Article  Google Scholar 

  19. Tierney, H. L. et al. Experimental demonstration of a single-molecule electric motor. Nature Nanotech. 6, 625–629 (2011).

    Article  Google Scholar 

  20. Von Delius, M., Geertsema, E. M. & Leigh, D. A. A synthetic small molecule that can walk down a track. Nature Chem. 2, 96–101 (2010).

    Article  Google Scholar 

  21. Flood, A. H., Stoddart, J. F., Steuerman, D. W. & Heath, J. R. Whence molecular electronics? Science 306, 2055–2056 (2004).

    Article  Google Scholar 

  22. Collier, C. P. et al. A [2]catenane-based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000).

    Article  Google Scholar 

  23. Raymo, F. M. Digital processing and communication with molecular switches. Adv. Mater. 14, 401–414 (2002).

    Article  Google Scholar 

  24. De Silva, P. A., Gunaratne, N. H. Q. & McCoy, C. P. A molecular photoionic AND gate based on fluorescent signalling. Nature 364, 42–44 (1993).

    Article  Google Scholar 

  25. Jiménez, M. C., Dietrich-Buchecker, C. & Sauvage, J.-P. Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew. Chem. Int. Ed. 39, 3284–3287 (2000).

    Article  Google Scholar 

  26. Bruns, C. J. & Stoddart, J. F. Rotaxane-based molecular muscles. Acc. Chem. Res. 47, 2186–2199 (2014).

    Article  Google Scholar 

  27. Angelos, S., Yang, Y.-W., Patel, K., Stoddart, J. F. & Zink, J. I. pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. Angew. Chem. Int. Ed. 47, 2222–2226 (2008).

    Article  Google Scholar 

  28. Berna, J. et al. Macroscopic transport by synthetic molecular machines. Nature Mater. 4, 704–710 (2005).

    Article  Google Scholar 

  29. Ferris, D. P. et al. Light-operated mechanized nanoparticles. J. Am. Chem. Soc. 131, 1686–1688 (2009).

    Article  Google Scholar 

  30. Koçer, A., Walko, M., Meijberg, W. & Feringa, B. L. A light-actuated nanovalve derived from a channel protein. Science 309, 755–758 (2005).

    Article  Google Scholar 

  31. Chen, K.-Y. et al. Control of surface wettability using tripodal light-activated molecular motors. J. Am. Chem. Soc. 136, 3219–3224 (2014).

    Article  Google Scholar 

  32. Stoll, R. S. & Hecht, S. Artificial light-gated catalyst systems. Angew. Chem. Int. Ed. 49, 5054–5075 (2010).

    Article  Google Scholar 

  33. Wang, J. & Feringa, B. L. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor. Science 331, 1429–1432 (2011).

    Article  Google Scholar 

  34. Lewandowski, B. et al. Sequence-specific peptide synthesis by an artificial small-molecule machine. Science 339, 189–193 (2013).

    Article  Google Scholar 

  35. Boyer, P. D. Molecular motors: what makes ATP synthase spin? Nature 402, 247–249 (1999).

    Article  Google Scholar 

  36. Berg, H. C. & Anderson, R. A. Bacteria swim by rotating their flagellar filaments. Nature 245, 380–382 (1973).

    Article  Google Scholar 

  37. Eelkema, R. et al. Molecular machines: nanomotor rotates microscale objects. Nature 440, 163 (2006).

    Article  Google Scholar 

  38. Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    Article  Google Scholar 

  39. Hernández, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    Article  Google Scholar 

  40. Vives, G., de Rouville, H.-P. J., Carella, A., Launay, J.-P. & Rapenne, G. Prototypes of molecular motors based on star-shaped organometallic ruthenium complexes. Chem. Soc. Rev. 38, 1551–1561 (2009).

    Article  Google Scholar 

  41. Koumura, N., Zijlstra, R. W., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    Article  Google Scholar 

  42. Koumura, N., Geertsema, E. M., van Gelder, M. B., Meetsma, A. & Feringa, B. L. Second generation light-driven molecular motors. Unidirectional rotation controlled by a single stereogenic center with near-perfect photoequilibria and acceleration of the speed of rotation by structural modification. J. Am. Chem. Soc. 124, 5037–5051 (2002).

    Article  Google Scholar 

  43. Pollard, M. M., Meetsma, A. & Feringa, B. L. A redesign of light-driven rotary molecular motors. Org. Biomol. Chem. 6, 507–512 (2008).

    Article  Google Scholar 

  44. Firman, K. & Youell, J. Molecular Motors in Bionanotechnology (CRC, Taylor and Francis, 2013).

    Book  Google Scholar 

  45. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic Compounds (Wiley, 1994).

    Google Scholar 

  46. Cahn, R. S., Ingold, C. & Prelog, V. Specification of molecular chirality. Angew. Chem. Int. Ed. Engl. 5, 385–415 (1966).

    Article  Google Scholar 

  47. Prelog, V. & Helmchen, G. Basic principles of the CIP-system and proposals for a revision. Angew. Chem. Int. Ed. Engl. 21, 567–583 (1982).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the Netherlands Organization for Scientific Research (NWO-CW), The Royal Netherlands Academy of Arts and Sciences (KNAW), NanoNextNL of the Government of the Netherlands and 130 partners, the European Research Council (ERC; advanced grant no. 227897 to B.L.F.) and the Ministry of Education, Culture and Science (Gravitation programme no. 024.001.035). The authors thank P. van der Meulen for assistance with the NMR experiments, H.A.V. Kistemaker for pioneering synthesis and T.C. Pijper for discussions regarding DFT calculations.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to various stages of the design and analysis of achiral motors. J.V. prepared the first meso motor. P.Š. performed the synthesis of advanced achiral motors. J.C.M.K. performed the computations and the experiments on photochemical and thermal behaviour. J.C.M.K. wrote the paper, with assistance from P.Š. and B.L.F.

Corresponding author

Correspondence to Ben L. Feringa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2241 kb)

Supplementary information

Supplementary Movie 1 (GIF 2482 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kistemaker, J., Štacko, P., Visser, J. et al. Unidirectional rotary motion in achiral molecular motors. Nature Chem 7, 890–896 (2015). https://doi.org/10.1038/nchem.2362

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2362

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing